Coding for Leveraging Network Gains in 5G

Jörg Kliewer

The Elisha Yegal Bar-Ness Center For Wireless Communications And Signal Processing Research
The Zettabyte Area

[Cisco Systems Inc.: The zettabyte area. White paper, 2015]
How Can Cellular Systems Keep Up?

[Nokia Networks: Looking ahead to 5G. White paper, April 2014]
Recent advantages in communication and information theory constitute promising approaches to leverage **network gains**

- network capacity
- cooperative and opportunistic communication
- improved multiple access techniques
Recent advantages in communication and information theory constitute promising approaches to leverage network gains

- network capacity
- cooperative and opportunistic communication
- improved multiple access techniques

In this talk: How to leverage network gains for both error correction and compression with modern graph based codes?
Improvements for error correcting codes have been limited mostly to the point-to-point case

- Low-density parity check codes
- Spatially coupled codes
- Polar codes
Improvements for error correcting codes have been limited mostly to the point-to-point case

- Low-density parity check codes
- Spatially coupled codes
- Polar codes

Gains in transmission power efficiency to be expected from

- Coding for spectrally efficiency communication
- Multi-terminal coding and decoding (i.e., for relaying, cooperation, broadcast)
Improvements for error correcting codes have been limited mostly to the point-to-point case.

- Low-density parity check codes
- Spatially coupled codes
- Polar codes

Gains in transmission power efficiency to be expected from:

- Coding for spectrally efficient communication
- Multi-terminal coding and decoding (i.e., for relaying, cooperation, broadcast)

Solution: Nested Codes
Nested Codes
Nested Codes

- Partitioning into subcodes C_{ℓ}, $\ell = 1, 2, \ldots, M$
- Can be seen as structured linear binning schemes
- Finite-field version of physical layer superposition codes
Multiple access channels

- data from each source node is encoded by a subcode C_{ℓ}
Applications for Multiterminal Communication

- Multiple access channels
 - data from each source node is encoded by a subcode C_ℓ

- Broadcast channels
 - Each destination node decodes a subset of subcodes C_ℓ
 - type-1 nested polar codes achieve best known inner bound [Marton 1979], but with insufficient finite block length scaling
Applications for Multiterminal Communication

- Multiple access channels
 - data from each source node is encoded by a subcode C_ℓ

- Broadcast channels
 - Each destination node decodes a subset of subcodes C_ℓ
 - type-1 nested polar codes achieve best known inner bound [Marton 1979], but with insufficient finite block length scaling

- Interference channels
 - e.g., scheme from [Han & Kobayashi 1981], 2-user channel: message split up in public and private part (codes C_1 and C_2)
Applications for Multiterminal Communication

- Multiple access channels
 - data from each source node is encoded by a subcode C_ℓ

- Broadcast channels
 - Each destination node decodes a subset of subcodes C_ℓ
 - type-1 nested polar codes achieve best known inner bound [Marton 1979], but with insufficient finite block length scaling

- Interference channels
 - e.g., scheme from [Han & Kobayashi 1981], 2-user channel: message split up in public and private part (codes C_1 and C_2)

- Many more: relay channels, cooperative diversity, wiretap channels, …
Consider k by n generator matrix G of linear code C

- M information words i_k

- **Type-1** codes: Partitioning of G into subcodes C_ℓ with generator G_ℓ and rate $R_\ell = k_\ell/n$
Consider \(k \) by \(n \) generator matrix \(\mathbf{G} \) of linear code \(\mathcal{C} \)

- \(M \) information words \(\mathbf{i}_k \)

Type-1 codes: Partitioning of \(\mathbf{G} \) into subcodes \(\mathcal{C}_\ell \) with generator \(\mathbf{G}_\ell \) and rate \(R_\ell = k_\ell / n \)

\[
\mathbf{c} = [\mathbf{i}_1, \mathbf{i}_2, \ldots, \mathbf{i}_M] \quad \mathbf{G} = [\mathbf{i}_1, \mathbf{i}_2, \ldots, \mathbf{i}_M] \\
\begin{bmatrix}
\mathbf{G}_1 \\
\mathbf{G}_2 \\
\vdots \\
\mathbf{G}_M
\end{bmatrix}
\]
Consider \(k \) by \(n \) generator matrix \(\mathbf{G} \) of linear code \(\mathcal{C} \)

\(M \) information words \(\mathbf{i}_k \)

Type-1 codes: Partitioning of \(\mathbf{G} \) into subcodes \(\mathcal{C}_\ell \) with generator \(\mathbf{G}_\ell \) and rate \(R_\ell = k_\ell / n \)

\[
\mathbf{c} = [\mathbf{i}_1, \mathbf{i}_2, \ldots, \mathbf{i}_M] \mathbf{G} = [\mathbf{i}_1, \mathbf{i}_2, \ldots, \mathbf{i}_M]
\]

\[
\begin{bmatrix}
\mathbf{G}_1 \\
\mathbf{G}_2 \\
\vdots \\
\mathbf{G}_M
\end{bmatrix}
\]

Type-2 codes: Partitioning of parity check matrix \(\mathbf{H} \) into subcodes \(\mathcal{C}_\ell \) with parity check matrix \(\mathbf{H}_\ell \)

\[
\begin{bmatrix}
\mathbf{H}_1 \\
\mathbf{H}_2 \\
\vdots \\
\mathbf{H}_M
\end{bmatrix} = \mathbf{H}
\]
LDPC Block Codes

Uncoded BPSK
Bit error probability
Shannon limit
Uncoded BPSK
Waterfall
Irregular LDPC-BC
Error floor
Regulated LDPC-BC

$E_b/N_0 \text{ (dB)}$
Tanner graph (3,6) regular LDPC code:

\[
\mathbf{H} = \begin{bmatrix}
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

Graph sparsely connected
Coupling construction via unwrapping:

Convolutional code structure

[Costello, Dolecek, Fuja, Kliwer, Mitchell, Smarandache, 2014]
Spatially Coupled LDPC Codes

Coupling construction via unwrapping:

\[
H = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

\[
H_{cc} = \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

Resulting Tanner graph:

Convolutional code structure

[Costello, Dolecek, Fuja, Kliwer, Mitchell, Smarandache, 2014]
Spatially Coupled LDPC Codes

Coupling construction via unwrapping:

\[H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \]

\[H_{cc} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \]

Resulting Tanner graph:

Terminated Tanner graph:

Convolutional code structure

[Costello, Dolecek, Fuja, Kliwer, Mitchell, Smarandache, 2014]
Spatially Coupled LDPC Codes: Performance

![Graph showing Bit error rate vs. E_b/N_0 for (3,6)-regular LDPC-BC and LDPC-CC with $n = 4098$ and $n_s = 4098$.]
How can we build good nested codes with spatially coupled LDPC codes?
Protograph representation of a type-1 nested spatially coupled LDPC code ensemble for $M=2$
Results

BER after decoding

E_b/N_0

C, random LDPC-BC
C, algebraic LDPC-BC
C, random SC-LDPC
C_1, random LDPC-BC
C_1, algebraic LDPC-BC
C_1, random SC-LDPC

random LDPC-BC
$n = 3248$

random SC-LDPC
$\nu_s = 2454$

algebraic LDPC-BC
$n = 3248$
Example: Distributed fronthaul compression for cloud radio access networks (CRANs) in 5G

[Image of a diagram showing cloud, CU, and multiple RUs (RU 1-8) connected to each other and to the cloud.]

[Park, Simeone, Sahin, Shamai, 2014]
Little attention has been paid so far on how data compression can reduce the network traffic.

Practical network based compression approaches virtually unknown.
Little attention has been paid so far on how data compression can reduce the network traffic.

Practical network based compression approaches virtually unknown.

In the following: Lossy compression based on spatially coupled low-density generator matrix (LDGM) codes

- Low encoding and decoding complexity (linear in time)
- Performance very close to the rate-distortion limit
Idea: Treat source sequence as noisy codeword from some fictitious channel code (here a spatially coupled LDGM code)
Idea: Treat source sequence as noisy codeword from some fictitious channel code (here a spatially coupled LDGM code)

Source encoding via modified belief propagation algorithm (channel decoding), windowed encoding for low latency
Idea: Treat source sequence as noisy codeword from some fictitious channel code (here a spatially coupled LDGM code)

Source encoding via modified belief propagation algorithm (channel decoding), \textit{windowed encoding} for low latency

Source decoding via channel encoding
Coupling of Low-Density Generator Matrix Codes

(a) LDGM-BC

(b) SC-LDGM code: time t

(c) SC-LDGM code: time $t + 1$

$W = 3$

encoded bits
Results: Symmetric Bernoulli Source

![Graph showing deviation from RD limit vs latency for different values of L (32, 45, 55, 85, 100).]
Results: Symmetric Bernoulli Source

![Graph showing distortion vs latency for different SC(4, 8) configurations with varying M values.](image)
Take Aways

- **Leveraging network gains** in canonical multi terminal problems by nested SC-LDPC codes
 - relaying, broadcast, and cooperative diversity scenarios

- Low-complexity **lossy and lossless compression** with SC-LDGM codes
Take Aways

- **Leveraging network gains** in canonical multi terminal problems by nested SC-LDPC codes
 - relaying, broadcast, and cooperative diversity scenarios

- Low-complexity **lossy and lossless compression** with SC-LDGM codes

- Example applications which can benefit from network compression gains:
 - Distributed compression for CRANs in 5G
 - Distributed compression of phasor measurement units in wide area measurement systems

- **Open:**
 - Communication problem: Design of nested codes for $M>2$
 - Compression problem: Design of nested codes and universal codes
Follow Up...

- Y.-C. Liang, S. Rini, J. Kliewer: On the design of LDPC codes for joint decoding over the multiple access channel, Submitted to ITW 2016.