Carbon Nanotubes in Water Treatment and Sea Water Desalination

CNTs for Sorbents and Membranes

- Chemically stable
- High surface area
- Thermally stable
- Possibility of fabrication by self-assembly
- Immobilization in membranes and filters
- Wide range of compounds
 - Polar and non-polar

Roy, Addo Ntim, Mitra and Sirkar. J. Membrane Sci. 2011
Sae-Khow and Mitra. Anal. Chem. 2010
Karwa, Iqbal, and Mitra, Carbon 2006,
Mishra and Ramaprabhu J. Phys. Chem. C 2010,

Gas Phase Sorption Capacities of CNTs

Relative Breakthrough Times (min)

	Polar			Non-Polar		
	DCM	Ethanol	Propanol	Hexane	Benzene	Toluene
Polar-CNT	16	35	30	5	6	10
Nonpolar- CNT	8	12	15	20	20	45
Carbopack	2	2	5	5	6	6

Mustansar, Saridara, Mitra, J. Chrom. and Analyst (2008)

CNT Based Removal of Arsenic from Water

NJIT Arsenic in water

- Exists primarily as oxyanions with formal oxidation states of III and V
- Arsenite As (III)
 - Dominates in sulfidic and methanic waters
 - Non ionic at the pH range of 4- $10(H_3AsO_3)$
 - High solubility
 - More toxic
- Arsenate As (V)
 - Dominant form in oxic waters
 - Ionic at the pH range of 4-10 ($H_2AsO_4^-$ / $HAsO_4^{2-}$)
 - More reactive in solution

Removal of Arsenic from Water

- Exists primarily as oxyanions with formal oxidation states of III and V
- □ Arsenite As (III)
 - Dominates in sulfidic and methanic waters
 - Non ionic at the pH range of $4-10(H_3AsO_3)$
 - High solubility
 - More toxic
- $\Box \quad \text{Arsenate} \text{As} (V)$
 - Dominant form in oxic waters
 - Ionic at the pH range of 4-10 ($H_2AsO_4^-/HAsO_4^2^-$)
 - More reactive in solution

Advanced case of arsenic poisoning, China, *photo courtesy of USGS.*

Arsenic Adsorption on Iron oxide

- Oxides of iron, aluminum and manganese are potential sinks for arsenic in aquifer sediments
- Iron oxide-Arsenic complexation reactions
 - α -FeOOH + H₂AsO₄⁻ + 3H⁺ \rightarrow FeH₂AsO₄ + 2H₂O
 - α -FeOOH + H₃AsO₃ + 2H⁺ \rightarrow FeH₂AsO₃ + 2H₂O
- Iron oxide coated materials for arsenic removal reported in literature
 - Sand, biomass, activated carbon etc

Synthesis of CNT-Iron Oxide Hybrid

NJIT

Addo Ntim and Mitra. J. Chem. Eng. Data (2011). 56 (5), 2077-2083

Comparison of the Arsenic Adsorption on Different Nanotube Forms

Adsorbents	Arsenic Removal (%)		<i>qe</i> (µg/g)		
	As(III)	As(V)	As(III)	As(V)	
MWNT-FeO _x	99	100	1723	189	
Original MWNT	10	23	9.9	23.2	
MWNT-COOH	3	9	3.3	9.0	
<i>qe</i> : micrograms of arsenic adsorbed per gram of adsorbent					

S. Ado Ntim and S. Mitra, Chem. and Engr. Data (2011)

Carbon Nanotube Immobilized Membranes (CNIM)

Applications of Membrane

- Turbidity & pathogen removal:
 - Microfiltration (MF)
 - Ultrafiltration (UF)
- Organic Removal: Nanofiltration (NF)
- Desalination: Reverse Osmosis (RO) or NF
- Dialysis kidney failure and ion Removal
- VOCs removal: Pervaporation

Cross Section 200 µm

Membrane Separation and Extraction

Carbon Nanotube Immobilized Membranes (CNIM)

(Polymeric membrane on left and carbon nanotube immobilized membrane on right)

Removal of Volatile Organics from Water Using Carbon Nanotube Immobilized Membranes

Removing VOCs from Water On CNIM

Pervaporation of Toluene

Pervaporation at Different Flow Rates for Dichloromethane

Sea Water Desalination on CNTs

Desalination by Reverse Osmosis

- Membrane separates a dilute solution from a concentrated solution
- Solvent crosses from the dilute to the concentrated
- Solvent flow is prevented by applying an opposing hydrostatic pressure (390 psi for sea water)
- □ 30 to 250 psi for fresh and brackish water, 600-1000 psi for sea water.

MSF Schematic

MULTI STAGE FLASH DISTILLATION

www.brighthub.com/engineering/mechanical/articles/29623.aspx.image=49823

Membrane Distillation

Membrane Distillation

- Heat the water solution (60-90°C) and it is partially transformed to water vapor
- The vapor will pass through the membrane and leave impurities behind
- Similar to a distillation, but occurs at lower temperatures

Membrane Distillation on CNIM

Water Vapor Flux During Sea Water Desalination on CNIM

Effect of CNTs on Mass Transfer Coefficients

Concentrating Pharmaceutical Waste on CNIM

MD Preconcentration of Pharmaceutical Waste and Generation of Clean Water

NJIT

Enrichment for Different Pharmaceuticals Using CNT Based MD

Compound	CNIM EF	Plain EF	%Enhancement
Ibuprofen	14.4	5.9	244
Acetaminophen	9.7	3.6	269
Diphenhydramin	e 13.5	5.1	265
Dibucaine	11.4	3.6	317

Next Generation Membrane- CNIM

- □ High Flux
- Better Selectivity
- □ Lower Temperature Operation -economical
- Thermal Stability
- Application Environmental Remediation, desalination, filtration, food processing

