Development of Instruments for Real-time Water Monitoring

S. Mitra New Jersey Institute of Technology Newark, NJ 07102 <u>mitra@njit.edu</u>

Acknowledgements: US EPA, NSF, US Army

On-line Real-time Monitoring

Real-time Monitoring of VOCs Ground Water Using Gas Injection Membrane Extraction (GIME)

- 1. K. Hylton and <u>S. Mitra</u>. *J. Chromatogr. A*, 2007, 1152, 199–214.
- 2. D. Kou and S. Mitra, Anal. Chem. 2001

Continuous Monitoring by GIME

Compounds	MDLs (ug/l)	RSD (%)
Benzene	0.1	1.7
Toluene	0.1	2.3
Ethylbenzene	0.9	2.8

Field Testing of Gime-GC System at a Superfund Site

The on-line real-time monitoring system

A groundwater treatment facility at the Naval and Engineering Station in Lakehurst, NJ, where the field study was conducted.

Continuous Monitoring by GIME-GC

Typical chromatograms from on-line analysis of water entering the treatment facility. Injections were made at I1, I2 etc.

Concentration Profiles over a six hour monitoring period

Steps in Trace Semi Volatile Measurements

Extraction-LLE, SPE, SPME

Concentration-Evaporative, Membrane

Detection-GC, HPLC, MS

Membrane Extraction

Schematic Diagram of ME-LC

Continuous monitoring by ME-LC

X. Guo and S. Mitra, Journal of Chromatography A, 904 (2000) 189-196

Simultaneous Extraction and Concentration

Solubility and Solvent Loss

	Kow (Log P)	Hexane		BA		MIBK		IPA	
		EE	EF	EE	EF	EE	EF	EE	EF
PCP	5.12	68.1	36.3	69.5	101.6	43.7	153.3	26.1	203.4
Atrazine	2.61	6.5	3.5	56.2	82.2	N/A	N/A	31.6	246.6
Naphthalene	3.30	46.3	24.6	81.3	119	33.9	119	37.4	292
Water Solubility		9.5	mg/l	8.4	g/l	19	g/l	30.9	9 g/l
Solvent Loss (%)		26	5.7	73	3.3	8	8.9	9)5

Ref: D. Kou and S. Mitra, Analytical Chemistry (Nov, 2003)

Analytical Performance

Compounds	MDL (µg/L)	RSD (%)
Atrazine	0.5	4.6
PCP	1.0	7.8
Naphthalene	0.9	6.3

Integrating Extraction and Concentration

Extraction with On-line Membrane Concentration

Wang and Mitra, Journal of Chromatography A, 1068 (2005), 237-242

Wang and Mitra, Journal of Chromatography A, 1068 (2005), 237-242

Total Analytical System

Wang and Mitra, Journal of Chromatography A, 1068 (2005), 237-242

Mass transfer in the TAS

Wang and Mitra, Journal of Chromatography A, 1068 (2005), 237-242

Comparison of EF in three experimental modes

Mode 1:membrane extraction only;

Mode 2: membrane extraction and pervaporation without N₂ stripping;

Mode 3: and membrane extraction and pervaporation with a N_2 flow rate of 45 mL/min.

Real Time Monitoring of Haloacetic Acids

Continuous SLME-HPLC

Wang, Kou and Mitra. Journal of Chromatography A (2005).

Series of Chromatograms from Continuous SLME of the Nine HAAs

Lab-on-a-chip, Total Analytical System

On-Chip SLMME

In Review- Anal. Chem. (2004)