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ABSTRACT 

 Viscoelastic mechanical properties of biological cells are commonly measured using atomic 

force microscope (AFM) dynamic indentation method with spherical tips. Storage and loss 

modulii of cells are then computed from the indentation force-displacement response under 

dynamic loading conditions. It is shown in current numerical simulations that those modulii 

computed based on existing analysis can not reflect the true values due to the substrate effect. 

This effect can alter the indentation modulus by changing the geometric relations between the 

indentation displacement and the contact area. Typically, the cell modulii are significantly 

overestimated in the existing indentation analysis.  

 

INTRODUCTION 

It is believed that AFM is one of the fastest, cheapest and most convenient ways to measure 

the cell properties [1-9]. In this method, the biological cell attached onto the substrate is indented 

using the spherical indenter with either the force (or the displacement) specified. The indentation 

response of the cell is obtained by measuring the P-δ relationship of the indenter tip. Using this 

relationship, the mechanical properties of the cell can be computed. The substrate can 

significantly affect the cell indentation behavior especially in the thin region of the cell with deep 

indentation. Typically, the basic mechanism of the substrate effect is considered as the stress 

stiffen effect since the substrate is orders of magnitude stiffer than the cell [5, 6]. In present study, 

it is found that the substrate can also change the relationship between the indentation contact area 

and the indentation displacement in cell indentation. Due to this change, the cell modulus will be 

significantly overestimated based on the existing indentation analysis. In order to obtain the true 

cell properties, the true relationship between the contact radius and the indentation displacement 

is required. In present work, the effect of substrate on the contact area is identified and a new 

relationship between indentation displacement and contact area is determined based on the 

numerical simulations. 

 

THEORETICAL BACKGROUND AND COMPUTATIONAL METHODS 

 The linear elastic quasi-static indentation behavior can be described by Hertz contact theory. 

For a rigid spherical indenter, the indentation force is given by 
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where a is the contact radius, R the spherical indenter tip radius, ν the Poisson’s ratio, E the 

elastic modulus. The schematic of spherical indentation using AFM is shown in Figure 1. If the 

strain is within the elastic limit when δ<<R , the contact radius is commonly approximated as the 

Hertz elastic contact radius: a ≈ (Rδ)
0.5

, where δ is the indentation displacement.  
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Figure 1 The schematic of dynamic indentation on cell with spherical indenter. 

  

 For linear viscoelastic materials, the dynamic modulus is commonly employed 

 ( ) ( ) ( )*
E E iEω ω ω′ ′′= + . (2) 

E′ is the storage modulus. E″ is the loss modulus. Both E′and E″are functions of the frequency of 

applied dynamic load. E′and E″are usually measured using the dynamic indentation, wherein the 

applied indentation displacement and the resulting indentation force can be expressed as 

sinusoidal functions : 

 ( ) ( ) ( )0 0sin  and ( ) sint t P t P P tδ δ δ ω ω φ= + ∆ = + ∆ + , (3)  

At a given frequency ω, they can be obtained by 
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All the above indentation analysis are based on the Hertz elastic contact solution, a ≈ (Rδ)
0.5

. 

However, this relationship might not be true in cell indentation. 

 In present work, the substrate effect on the indentation contact area of cell is studied using 

FEM simulations. The cell is simply modeled as a linear viscoelastic material using standard 

linear solid model. The substrate and indenter tip are assumed as rigid elastic material. The 

spherical indenter tip is modeled as an 2-D axisymmetric surface. Cell is represented by 25000 

4-node axisymmetric elements with reduced integration. All degrees of freedom of nodes on the 

bottom of the cell are constrained to simulate the condition that the cell is fully adhered to the 

rigid substrate surface. In order to examine the true substrate effect, the indentation displacement 

selected in the simulations coincide with the lest experimentally applied value [5, 6]. All FEM 

simulations are performed using commercial code ABAQUS v.6.8. 

 

CONTACT RADIUS IN CELL INDENTAION 

 The variation of contact radius (normalized by the indenter tip radius) computed from FEM 

with the indentation displacement (normalized by the cell thickness) is shown in Figure 2. For 

the sake of reference, the Hertz contact radius a is shown as the dashed line. It shows that the cell 
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indentation contact radius is not only dependent on the value of δ, R but also sensitive to the cell 

thickness h: ã = f(R,δ, h). In all cases, the deviation between the numerical solution (ã) computed 

from FEM and Hertz solution (a) increases with the increase in δ/h; this deviation also depends 

on the indenter tip size R. For a smaller R, ã<a; for a larger R, ã>a. The deviation between ã and 

a is from -11% (R/h=0.1) to 25% (R/h=3) at δ/h=10% in the current study range. These results 

are mainly caused by the substrate effect (for a large R) and the indenter tip size effect (for a 

small R). When R is in the medium (e.g. R=4µm) and h=10µm, R>>δ can be essentially met and 

the substrate effect is also weak. There is a good agreement between ã and a. which shows that 

Hertz solution is accurate when R>>δ, without substrate effect. 

 

 

 

 

 

 

 

 

 

 

 

    

  

 

 

Figure 2 The relationship between normalized contact radius a/R and normalized indentation 

displacement δ/h. 

  

The contact radius calculated from FEM can be approximately fitted as: 

 ( )0.5
a R kδ δ= +% , (5) 

where the fitting parameter k =k(R, h). For all cases except the one with R=1µm and δ =1µm, k 

can be fitted as: k = k1+k2*R/h. The fitting parameters k1 and k2 are essentially constants and k1 ≈ 

-0.083, k2 ≈ 0.48.  

  

DISCUSSION 

The substrate effect can increase the indentation contact area with the same indentation 

displacement except for extremely small indenter tip size. When the indenter tip penetrates into 

the top surface of cell, the compress along the cell thickness direction produces the radial 

stretching due to the Poisson's effect. Both the compression and the stretch cause the true 

penetration depth, δin, to be less than the displacement of indenter tip, δ. For example, δ ≈ 2δin, in 
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the Hertz solution. If a cell is fully adhered onto a substrate, the substrate will constrain the 

bottom surface of the cell and prevents the motion in both thickness and radial directions. This 

constraint will reduce the cell stretching in the radial direction. This constraint effect will 

increase the penetration depth δin under the same applied δ compared with the case without the 

substrate. Thus, the contact radius will be larger than the Hertz contact radius due to the substrate 

effect. The substrate effect on the contact radius increases with a increase of R or decreases with 

a increase of h. 

 However, when R is very small, i.e. R=1µm, it is shown that ã<a, which is caused by the 

indenter tip size effect. The Hertz's solution of the elastic contact problem is based on the theory 

of infinitesimal deformation,δ<<R. The higher order terms of δ are neglected and the contact 

radius is approximated as: a ≈ (Rδ)
0.5

. However, the cell indentation typically requires a relative 

small R and a large δ, wherein the omission of higher order terms of δ results in error in the 

determination of the contact radius. The indenter tip size effect will reduce the contact radius 

compared with the Hertz solution. For a given R, this effect increases with the increase of δ. 

Generally, the indenter tip size effect can be reduced with a larger indenter tip size. Since the 

substrate effect is very weak with a very small indenter tip size, the computed contact radius is 

less than the Hertz contact radius due to the indenter tip size effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3 The cell modulus correction factor from the inaccurate contact area 

 

 

ELASTIC MODULUS IN CELL INDENTAION 

 Substitution of the computed contact radius ã into equation (1) gives  
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If a ≈ (Rδ)
0.5

 is used, the elastic modulus in quasi-static indentation will be overestimated by a 

factor fqs =(ã/a)
3
. Figure 3 shows the variation of fqs with R/h for the samples with different R and 

h at δ/h =10%. It is shown that for a thin cell adhered with a substrate, the indentation modulus 

can be overestimated even at a small indentation displacement based on the existing quasi-static 

indentation analysis. In the current study, the elastic modulus can even be overestimated by about 

over 90% at δ/h=10% in the quasi-static indentation analysis due to the underestimation of 

contact area.  

 For viscoelastic materials, the dynamic indentation force can be calculated using the 

correspondence principle: replacing the time independent constant in equation (6) by the 

corresponding differential operators of the viscoelastic constitutive model [10]. The resulted 

indentation force can be described as P(t)=P0+P
*
(t), where the oscillated part is: 
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Therefore, 
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 It is shown that the dynamic modulus components are not only the functions of the oscillated 

load frequency ω, but also depend on the direct indentation displacement δ0 and increase with 

the increase of δ0. Equation (4) will overestimate the complex modulus with the factor fd = 

2ξ(δ0)/(3a(δ0)) if the Hertz contact radius is used, but the phase difference φ between the 

indentation force and the indentation displacement is not affected by the contact area correction. 

Figure 3 also shows that the dynamic indentation analysis provides a even higher overestimation 

of elastic modulus E than the quasi-static indentation analysis due to the underestimation of 

contact area. In the current study, the elastic modulus can be overestimated by 130% using the 

dynamic indentation analysis for the case wherein it is overestimated by 90% in the quasi-static 

analysis. Therefore, it is very important to introduce the corrected contact radius into the 

dynamic indentation analysis in order to obtain the accurate dynamic modulus.   
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CONCLUSIONS 

 In this study, the evaluation of the cell mechanical properties using spherical indentation 

measurement is investigated based on numerical simulation (FEM). The results show that the 

dynamic modulus of cell measured using spherical indentation can be significantly overestimated 

using the existing indentation analysis. This overestimation is mainly caused by the deviation of 

indentation contact radius from the Hertz solution. These influences are mainly caused by the 

substrate effect and the nonlinear geometrical effect. Comparing with the Hertz solution, the 

substrate can increase the contact radius, but the nonlinear geometrical effect can reduce the 

contact radius. Since the substrate effect is typically much stronger except for extremely small 

indenter tip size, typically, the cell modulus is significantly overestimated based on the existing 

indentation analysis. In order to obtain the true cell modulus, the corrected contact radius needs 

to be introduced into the existing indentation analysis. 
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