Expediting the transport of Data Center Flows (DAQ: Deadline-Aware Queue)

Roberto Rojas-Cessa
Networking Research Laboratory
ECE Dept.
New Jersey Institute of Technology
Newark, NJ 07102
rojas@njit.edu
Examples of DC topologies

Fat-Tree

VL2

BCube

FiCoon

Research Day - CWCSPR
What is unique in Data Center Traffic?
Partition-Aggregate Model

Simplification of traffic load.
Data Aggregation

Flows may be associated with response deadlines.

Deadlines are inherited by partial processes.

For all flows, short Flow Completion times (FCTs) are desirable.

For deadline-sensitive flows, short Application Throughput is desirable.

Data aggregation → Connection-Oriented Transport → Transmission Control Protocol (TCP)
Expected requirements of a Data Center (DC) Transport Protocol

- Maximize the number of flows completing transmission before deadlines
- Guarantee a high throughput for long flows.
- Allow high, if not 100%, link utilization.
- Achieve lossless transmissions.
- Minimize the amount of state information at switches
Why TCP is not good enough?

- Data Center Flows: Long + Short Flows
- Congestion
- Multiple flows concur at aggregation switches
- Lack of a centralized scheduler

Flow control mechanisms are not transmission speed aware → Long FCTs!

Incast Throughput Collapse:
Retransmission Time Offs + Retransmission → choke bandwidth
Existing Solutions

• Earlier Congestion Notification (ECN): DCTCP
• Rate Control: D2TCP, D3, PDQ (deadline aware)
• Congestion Control: RCP
• Pacing Schemes: HULL
• Load Balancing Schemes: DeTail, CONGA, RepFlow
• Switch Modification: DAQ
Deadline-Applicable Schemes

- **RCP** [Dukkipati05]: assigns rate according to available bandwidth. Parameters must be tuned.
- **DCTCP** [Alizadeh10]: ECN + congestion window modification. Agnostic to deadlines.
- **D³** [Wilson11]: reserves transmission rates FCFS.
- **PDQ** [Hong12]: selects flows → earliest deadline first (EDF) and the shortest job first (SJF). High complexity.
Proposed Scheme: Deadline Aware Queue (DAQ) at DC Switches

• Objectives:
 – Maximize application throughput
 – Ensure minimum bandwidth for long flows
 – Minimize flow-state information at switches
 – Minimize modification to layered protocols
Switch Architecture

Use Three Queues: Urgent, Non-urgent, Long
Short flows: Urgent or Non-urgent
Long flows: long-flow queue + service weighted scheduling
Test setup

• Loss-less flow control between
 – Senders and switch
 – Switch and receiver (aggregator)

• Large congestion window size instead of slow start

Comparison: RCP and D³
Impact of Urgent Threshold Value

Application throughput: No. on-time flows/All arrived flows

Flow size: 30KB, rate: 3600 flows/s

Number of long flows: 5
Supported number of senders

Number of concurrent senders for achieving 99% application throughput with flow size mean of 10 Kbytes and deadlines [20, 40] ms.
Application and Average Throughput

Short flow size: 15 Kbyte, long flow size: 100Mbyte (2).
Short flow load: 0.3 %
No. of senders: [5, 40]

Research Day - CWCSPR
Performance under short and long flows

Short flow size: 15KB
Conclusions

• Deadline-oriented approach with small modification to transport layer.
• Urgent flows receive preferential service.
• Few urgent flows speedup transmission.
• DAQ achieves high Application Throughput
• Long flows receive minimum throughput through Weighted Round-Robin
Thank you

rojas@njit.edu