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Multistability Arising from Synaptic Dynamics

Definition

The strength of a synapse imparted by a  onto its postsynaptic target can change as a function of thepresynaptic neuron
activity of the presynaptic neuron. This change is referred to as short-term synaptic plasticity. Networks of neurons
connected with plastic synapses have the potential ability to display multiple stable solutions either at different parameter
values or for the same set of parameters. This latter property is known as multistability. Self-consistency between the
network frequency and the level of plasticity is needed to ensure multistability.

Description

The  controls a vast array of behaviors that include both basic functions such as processingcentral nervous system (CNS)
of  (Sharp et al. ), regulating circadian rhythms (Piggins and Guilding ), coordinating motor outputsensory input 1990 2011
(Marder and Calabrese ), and more complex functions such as  (O'Keefe ), decision making,1996 spatial navigation 1991
and  (Treves and Rolls ). Although the CNS includes a large number of neurons and an evenmemory formation 1994
larger number of synaptic connections, these constitute a finite number of networks and few compared to the seemingly
limitless number of behavioral tasks. This disparity strongly indicates that the networks of the CNS can reorganize to
produce multiple outputs.
The output of a  can be quantified in a number of ways. The  of the network neurons, forneuronal network firing rate
example, may encode information or, alternatively, the output may be coded in the pattern of activity of sub-networks of
neurons. The specific timing of spikes or bursting events is also a way in which  their output. In manynetworks direct
contexts, to be useful to downstream targets, the neuronal output must be stable, resistant to perturbations or noise. From
a mathematical viewpoint, this implies that the output is likely to be a stable periodic solution of a set of underlying
equations that govern the network activity.
In order to have multiple functional roles, a network must have the ability to exhibit multiple stable outputs. There are two
obvious ways in which this ability may arise. One is through , where different stable solutions exist forneuromodulation
different parameter values or for different inputs to the network. The role of the modulator is to change parameter values
between these states depending on the task to be completed. A second way is through multistability where more than
one stable solution exists for the same set of parameter values. Which stable state ends up being the attracting solution
depends on the initial conditions, i.e., the state at which the network becomes employed.
Short-term synaptic plasticity (STSP) refers to the ability of a synapse to change its synaptic strength depending on the
frequency at which it is being activated by a presynaptic neuron. Facilitation refers to case where the strength is an
increasing function of frequency and depression when it is a decreasing function. Significant research has been
conducted to understand the mechanisms underlying plasticity. How STSP can shape the output of a neuronal network is
also a central focus of investigation.
Just as there are synaptic rise and decay rates associated with different neurotransmitter receptor types, there are also
different rates associated with facilitation or depression of a synapse. STSP acts at short timescales and, as a form of
synaptic plasticity, is distinct from plasticity forms that act at long timescales: long-term potentiation and depression (LTP
and ) and spike timing-dependent plasticity (STDP). LTP, LTD, and STDP last for very long time durations on theLTD
order of hours to weeks and are mainly associated with changes in synaptic strength due to the relative timing of firing in
pre- and postsynaptic pairs. Timescales associated with STSP are on the order of several milliseconds to seconds, the
same order as the rise and decay of excitatory, inhibitory, and typical voltage-gated ionic currents.
Below, we discuss a few basic models of STSP and provide some examples of how multiple stable solutions are created
in small neuronal networks that involve STSP. Synapses that exhibit STSP have different steady-state amplitudes for
different presynaptic firing rates. Multistability arises when the components of the network can be organized to access
different values of these steady-state behaviors. This can occur through "fine-tuning" in predominantly feed-forward

 or through "self-consistency" in feedback settings. The role that STSP plays in creating these opportunities fornetworks
multistability will be discussed below.
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Mathematical Models of Short-Term Synaptic Depression

Three phenomenological models of short-term synaptic plasticity are reviewed. The first two, the AVSN model of Abbott et
al. ( ) and the TM model (Tsodyks and Markram ), are the most popular and are generally used in conjunction1997 1997
with networks of spiking neurons. The third model, BMN (Bose et al. ), is relevant to neurons, such as bursters, that2001
display slow oscillations and has the added feature that it separates the dynamics of synaptic plasticity from those of
synaptic rise and decay.
For simplicity, we focus on models that only involve . In the Abbott et al. model, synaptic depression issynaptic depression
based on the assumption that when a presynaptic spike results in transmission, the synaptic strength is decremented by
some fraction . Between spikes, the synapse recovers from depression. If ( ) denotes the synaptic strength at time  andf A t t
  denotes a sequence of spike times, then at each spike timet i

where the superscript + denotes limit from above and − from below. Between spikes, the variable is allowed to recover
according to

for   . If a set of presynaptic spikes arrives periodically with rate , then the steady-state synaptictime constant τ A r

amplitude ( ) can be calculated asA r

(1)

In this model, the dynamics of depression and those of  are both modeled by a single variable .synaptic efficacy A
The TM model describes synaptic plasticity by partitioning synaptic resources into three states: effective ( ), inactive ( ),E I
and recovered ( ), with  +  +  = 1. Each presynaptic spike at  =   utilizes a fraction   of recovered resourcesR E R I t t AP U SE
transferring them to the effective pool. Resources in this group decay with time constant   to the inactive pool. Fromτ inact
here, resources reenter the recovered pool with time constant  .τ rec

If action potentials arrive with interval Δ  and if this time is large compared to  , then the postsynaptic current at eacht τ inact
action potential can be calculated from

(2)

where   is the maximal  that can be produced if all resources immediately go from  to . As with the AVSNA SE PSC R E

model, the efficacy and timescales associated with the synaptic current are modeled by the same set of variables that
describe depression.
The BMN model is different than the above models in two ways. First, it dissociates the dynamics of plasticity from those
of synaptic efficacy. Second, it is designed to model the effect of slow wave or bursting oscillations, not just spiking
neurons. A variable  keeps track of the level of depression of the synapse, while the variable  transmits the synapticd s
efficacy. These variables are linked at  =   defined by the moment when the presynaptic voltage  increases through at t sp v

threshold   . Both are governed by first-order equations:v θ
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(3)

(4)

where ( ) is the  equal to one when  ≥ 0 and zero otherwise. The postsynaptic current generated byH x Heaviside function x

this model is simply  where  and   are the maximal conductance and E syn reversal

 of the synapse. Figure 1 shows an example of how the  and  variables interact in the BMN model. Equations 3potential s d
and 4 are coupled only when the  crosses   at which point the value of  is allowed to evolve towardspresynaptic neuron v θ s

the value (   ). If   is small, then this effectively serves as an instantaneous reset. Note that the dynamics of  thend t sp τ γ s

remains uncoupled from those of  until the next moment that  increases through threshold. In particular, when thed v
presynaptic neuron is below threshold, the synaptic current decays with time constant   that is independent of theτ κ
recovery of synaptic resources which is dependent on   . If ( ) from the AVSN model and the  variable from the TMτ α A t R

model were plotted, they would qualitatively resemble the  variable of the BMN model (Fig. 1), except that, in the formerd
two models, the variables would instantaneously be decremented at the time of a spike and recover between spikes, as
opposed to the gradual decline over the time   in the BMN model. If a periodic train of presynaptic spikes or bursts withT A
active time given by   and inactive time given by   drives Eqs. 3 and 4, then the steady-state amplitude for theT A T I
synaptic resources, called *, measured at the time that  increases through   isd v v θ

Fig. 1
The time trace of the  and  variables for the BMN model plotted in response to the presynaptic activity  . The time constants thatd s V pre
control depression (τ ), recovery (τ ) and decay (τ ) of the synapse are shown.  approaches the value of  at the onset of activity ( *β α κ s d d

at steady state) with a fast time constant (τ )γ

(5)

The peak synaptic strength   can be calculated as the product of * with the maximal synaptic conductanceg peak d

(6)

Note that for fixed   the expression for * is equivalent to that of ( ) given in Eq. 1 in the AVSN model. Further,   → ,T A d A r T I ∞

  → 1, monotonically showing that the level of available synaptic resources recovers back to a maximal value as thed ∗
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inactive time increases (equivalently as the frequency tends to 0).
All three models describe the short-term dynamics of a synapse when the presynaptic neuron is intrinsically rhythmic. In
this case, the parameters  in the AVSN model,   in the TM model, and   and   in the BMN model can be adjustedr T AP T I T A
to achieve a specific synaptic strength. In particular, in a feed-forward or driven network, the level of plasticity can be
finely tuned by controlling the frequency of the drive. In the case of a depressing synapse, strong drive leads to higher
frequencies of synaptic usage, leading to weaker synapses. The opposite is true for lower-frequency driving. Figure 2
shows how the peak synaptic strength   increases as a function of increasing   (   is kept fixed) for the BMNg peak T I T A
model. A qualitatively equivalent graph arises using Eq. 1 by plotting ( ) versus 1/  or by using Eq. 2 to plot theA r r
steady-state  versus Δ . As the period increases (frequency decreases), the peak synaptic strength increases to thePSC t

maximal level .

Fig. 2
For a depressing synapse, the peak synaptic strength is an increasing function of the presynaptic silent duration   as derived fromT I

Eqs. 5 and 6

In a feedback network containing many synapses with STSP, the quantities ,  ,   , and   do not necessarilyr T AP T I T A
remain parameters. Instead they can be affected by the  that the neuron receives. Thus to obtain periodicsynaptic inputs
solutions, the plasticity variables must satisfy a consistency condition. Namely, network period is a function of synaptic
strength and, alternatively, peak synaptic strength is a function of network period. When these two are self-consistent, a
periodic solution can occur. Multistability results when this consistency condition can be satisfied in different ways at
different network periods.

Fine-Tuning Synaptic Strength in Feed-Forward Networks

In many central pattern-generating networks, the constituent neurons maintain a constant relative phase with respect to
the network cycle even as the period of oscillations varies. To examine the role of STSP in such phase constancy,
consider a network of two neurons  and  in which  is an oscillatory pacemaker neuron (with period ) which inhibits O F O P F
and  rebounds from this inhibition to fire. After each inhibitory input to , the time Δ  that  takes to reach threshold canF F t F
be determined. This defines a phase  = Δ /  as the phase at which  fires. Manor et al. ( ) showed how ϕ t P F 2003 synaptic

 could help the −  network maintain phase. Namely, if  has small period, its synapse to  is depressed anddepression O F O F
thus weak. There is little effect on the timing Δ  of  firing. In this case, there is a periodic solution in which the time to t F F
firing is basically constant and controlled by parameters that are intrinsic to . Alternatively, when the period of  isF O
increased by increasing  , then its synapse to  has a chance to recover and become stronger. Now the firing time ΔT I F t
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depends more strongly on   and the decay rate of inhibition   . This represents another stable solution where theg peak τ κ
phase of firing is controlled by the interplay of parameters associated with the  synapse and those intrinsic to . InO F
Manor et al. , it is shown that Δ  satisfies an equation of the form2003 t

(7)

for  ,   >   > 0 and   being a time constant associated with a potassium current in . At small periods,   isc 1 c 2 c 3 τ w F g peak
small and the first term in Eq. 7 dominates. As can be seen, Δ  is independent of   , and therefore,  = Δ /  ∼ 1/ . Att T I ϕ t P P

larger periods,   given in Eq. 6 increases with   and the second term dominates. In this case Δ  changes with g peak T I t P

leading to a complicated dependence of phase with  [see (Manor et al. ) for the full details].P 2003
The main point to convey here is that, in a , if the peak synaptic strength is controlled by thefeed-forward network
pacemaker, then it can be effectively treated as a parameter. In particular, by controlling the period of the pacemaker,  g

 can be fine-tuned to any desired value leading to different kinds of solutions. Also see Carver et al. ( ) and Lewispeak 2008

and Maler ( ) where similar ideas are employed in a feed-forward context.2002

Self-Consistency in Feedback Networks

In Tsodyks et al. ( ), Tsodyks et al. showed how synaptic depression can be used to obtain population bursts in2000
cortical excitatory-inhibitory ( - ) networks. Tabak et al. ( ) showed a similar result in a model of development of theE I 2000
chick spinal cord using a rate model that only involved excitation. Both models operate using similar principals. In the
Tsodyks et al. study, a network of 400  cells was mutually and randomly coupled to a set of 100  cells. All synapsesE I
display both synaptic facilitation and depression of varying degrees. The effect of synaptic depression was more relevant,
as facilitation plays less of a role in creating the population burst. Focusing solely on synaptic depression, if the  cellsE
have a high , then their synapses weaken and have less effect on their postsynaptic targets. At lowerfiring rate
frequencies, their synapses have a chance to recover so that, when they fire, they can strongly recruit other  and  cellsE I
into the population activity. In effect, the model utilizes the two distinct stable states (strong versus weak synapses) that
are present in the feed-forward network described in the previous section, but now finds a way to internally toggle
between the two. Figure 3 is from Tsodyks et al. ( ) in which the top panel shows the fraction of neurons that are2000
active in a specified time bin and the bottom panel the time course of synaptic resource recovery from depression,
averaged over all  cells. As the top panel shows, there are bursts of network activity where larger numbers of neuronsE
are coactive. Correspondingly, associated with each burst is a rapid drop in the average synaptic resources, followed by
recovery on a longer timescale. Note that the recovery dynamics shown in the bottom panel corresponds to the trace of
the d variable in Fig. 2 of the BMN model for the case where   is very short.T A
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Fig. 3
Population bursts in a network model of E and I neurons coupled with dynamic synapses.  shows network populationTop panel

activity.  depicts the average synaptic resources for each  cell (Modified from Tsodyks et al. ( ))Bottom panel E 2000

A critical reason that population bursts exist in the Tsodyks et al. model is the heterogeneity in the basal firing rates of the
individual  cells. The network is tuned so that some fractions of  cells have high spontaneous firing rates. It is the firingE E
of this group that initiates recruitment of other  cells that form the burst. Self-consistency then dictates that the level ofE
available synaptic resources is sufficient to continue the recruitment of enough cells to form the burst. This will occur only
if the recruitment occurs after a suitably (and self-consistently) long inter-burst interval. See Tsodyks et al. ( ) for2000
further details including how the existence of the burst depends on the maximal synaptic conductance.
In Bose et al. ( ), a simpler deterministic system consisting of just one -  pair with depression in the  to  synapse is2001 E I I E
considered. Here, it is possible to mathematically analyze the self-consistency condition. In this model, the activity of I is
slaved to that of E. A map Π( ) is derived that measures the value of the depression variable each time  fires. This mapd E
is easily obtained by solving Eq. 3 over one complete cycle of a typically  oscillation. Namely, solve ′ = − /   with initialE d d τ β
condition (0) for a time   corresponding to how long  is active. Then solve ′ = (1 − )/   with initial condition (   )d T A E d d τ α d T A
for a time   to find   = Π(   ) given byT I d +1n d n

(8)

Consider the case where   is fixed, but   varies as a function of the synaptic strength of the  to  synapse. BecauseT A T I I E

this synapse is frequency dependent,   is an unknown in Eq. 8. However,   can be determined at each cycle using anT I T I
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equation similar to Eq. 7 given by

(9)

where  is the maximal inhibitory conductance. A fixed point of the map Π corresponds to a periodic solution of the 
-  network. The value of  at the fixed point, denoted *, determines the overall level of depression associated with thatE I d d

solution and correspondingly determines the network period. Note that * is still given by Eq. 5 and it represents thed
situation where there is a self-consistency between the network period (   +   ) and synaptic strength (  ). As T I T A g peak

 changes the fixed points of Π undergo two different saddle-node bifurcations leading to range of values over
which there are two stable solutions shown in Fig. 4a. Along the lower stable branch of fixed points, the maximal synaptic
strength is small and the ensuing  to  synapse never becomes strong enough to slow the high-frequency intrinsicI E

oscillations of . Here,   is small and the value of the fixed point is small. On the upper branch,  is large enoughE T i
so that when  fires, it forces  to remain inactive for a longer time. This makes   become larger through Eq. 9, whichI E T I
through Eq. 5 forces * to become large. This leads to a low-frequency solution. In Bose et al. ( ), it is shown thatd 2001
both solutions can coexist leading to . Figure 4b illustrates the bistability showing a voltage trace of an −  pairbistability E I
along with the corresponding trace for . At the beginning of the trace, −  oscillates at a high frequency in which the  to d E I I

 synapse is depressed. Transient  of I allows its synapse to recover so that when it again fires, it canE hyperpolarization
strongly inhibit . The transition to longer periods then ensues. The transition back to high-frequency oscillations couldE
occur, for example, by transiently driving  to higher frequencies (not shown). Thus, there are two coexistent stableE
solutions, and transient inputs can make the network transition between them.



8

SpringerReference
Prof. Amitabha Bose and PhD Farzan Nadim
Multistability Arising from Synaptic Dynamics

20 Apr 2014 04:16http://www.springerreference.com/index/chapterdbid/348337

© Springer-Verlag Berlin Heidelberg 2014

Fig. 4
Bistability of a two-cell -  network where the  to  synapse is depressing. ( ) The bifurcation diagram of network period versus theE I I E a

maximal conductance of the depressing synapse.  shows the bistable range.  are stable, Shaded region Solid lines dashed lines

unstable. ( ) Voltage traces of the two cells and the depression variable shown for a value of  in the bistable range. A briefb

hyperpolarizing pulse in the  cell ( ) results in a transition from the fast period oscillations [lower solid branch of ( )] to slowI arrow a
period oscillations [higher solid branch of ( )] (Modified from Bose et al. ( ))a 2001

In Chandrasekaran et al. ( ), the two-cell network is generalized to a globally inhibitory network consisting of a single 2009 I
cell that is reciprocally coupled to a network of  cells. The  cells have no direct synaptic connections to one another.E E
Each of the  cell synapses exhibits short-term depression. Similar to the previous example,  fires whenever any  cellI I E
fires. If the  cells are all synchronized, the  cell's  will be low in comparison to when the  cells are clusteredE I firing rate E
into different groups. As a result, the firing rate of  can be used as a proxy for determining how many clusters the  cellsI E
have broken into; see Fig. 5. The different firing rates of  yield different levels of depression which in turn can only exist ifI
there is self-consistency with the exact number of clusters needed to produce the specific amount of depression. The
generalization of equations and Eq. 9 to handle this case led to a 2-dimensional map for which there are multiple
coexistent fixed points. Each fixed point corresponds to a solution with a different number of clusters of  cells. FullE
details are in Chandrasekaran et al. ( ), where it is shown that the firing rate of  has a one-to-one increasing2009 I
relationship with the number of clusters. See also Bose and Booth ( ), which considers the role of 2011 synaptic

 in  of two heterogeneous  cells.depression phase locking I
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Fig. 5
Two of multiple stable solutions in a network of one  neuron reciprocally coupled to four  neurons. The  to  synapse is depressingI E I E

(Modified from Chandrasekaran et al. ( ))2009

General Observations Regarding Networks and Short-Term Synaptic Plasticity

Short-term synaptic plasticity has been suggested to be of importance for many functions in the nervous system. It has
been proposed to play a role in cortical gain control (Abbott et al. ), population rhythm generation (Tabak et al. ;1997 2000
Tsodyks et al. ), and direction selectivity (Carver et al. ). In addition, temporal coding in cortical processing such2000 2008
as  detection, coincidence detection (Thomson ), sound localization (Cook et al. ), and phasenovelty 2000 2003
maintenance (Manor et al. ) may be attributed to depression. In experimental (Manor and Nadim ) studies of2003 2001
invertebrate central pattern generators, synaptic depression has been shown to introduce  of . Inbistability firing patterns
Izhikevich et al. ( ), it is proposed that STSP creates a synaptic resonance whereby networks align themselves to2003
operate at frequencies where there is a balance between synaptic facilitation and depression. That work suggests that by
operating at resonant frequencies, networks increase the reliability of synaptic transmission and provide a novel
mechanism for selective communication between neurons.
A specific proposed role of synaptic plasticity is that it gives rise to multistability or the existence of multiple different
stable states. Multistability is defined as the coexistence of different stable states for the same parameter values.
Alternatively, networks can have different stable states as a result of changing of parameter values due to 

 or external drives to the network. These two situations give rise to distinct types of networks,neuromodulation
predominantly feedback versus feed-forward. Furthermore, they lead to different kinds of mathematical questions and
challenges.
In studying networks involving STSP, the underlying intrinsic dynamics of individual neurons are relevant, but often only in
how they affect the synapses. Indeed, an important point to note is that there are effects of plasticity that are independent
of the properties of the postsynaptic cell. This is especially true in  where the level of plasticity, asfeed-forward networks
argued above, can be fine-tuned. One can then assess how the level of fine-tuning affects different kinds of model cells.
The fine-tuning itself is just a synaptic property. Where the interplay between synapse and cell model can become
important is in , where the postsynaptic cell has to transform the synaptic input it receives into afeedback networks
synaptic output. If the outgoing synapse itself exhibits plasticity, then how the intrinsic properties of the cell interact with
the incoming  would quantitatively affect the output of the system. However, the qualitative behavior ofsynaptic properties
the network, including the existence of multistability, would be less affected by these intrinsic properties.
There are several mathematical challenges that arise in assessing whether multistability arises due to synaptic plasticity.
In the absence of plasticity, when the synaptic coupling is not frequency dependent, then it is often possible to derive a
1-dimensional map to assess the existence and stability of solutions. Further, when the coupling between neurons is
weak, then averaging can be used to derive a simplified 1-dimensional equation based on phase differences to assess
these questions (Ermentrout and Kopell ). Synaptic plasticity, by its nature, does not lead to . The1991 weak coupling
maps in this case are typically 2 dimensional or higher. While the analysis of these higher-dimensional maps poses
significant mathematical challenges, it also affords the opportunity to derive new mathematical techniques for their
analysis that can be generalized to other scenarios.
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