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Bursting in Neurons and Small Networks

Definition

Bursting refers to patterns of  consisting of episodes of relatively  separated by intervals of neural activity fast spiking
. Bursting neurons are ubiquitous in the nervous system and play important roles in the production of motor,quiescence

sensory, and cognitive behaviors. Because bursting is the predominant mode of activity in  central pattern generator (CPG
 networks that underlie rhythmic motor  neurons have been best characterized in invertebrate CPG) activity, bursting

networks. Bursting neurons fall into two classes, based on whether bursting is an intrinsic neuronal property, resulting
solely from the interaction among ionic currents, or whether it is a network property, emerging from the interaction among
ionic and synaptic currents.

Detailed Description

Introduction and Background

Bursting patterns consist of episodes of relatively fast spiking (bursts) separated by intervals of either quiescence or
subthreshold activity such as subthreshold oscillations (Kispersky et al. ; Malashchenko et al. ; Desroches et al. 2010 2011

). Bursting is ubiquitous in the nervous system and has been shown to play an important role in the generation of2013
network  (Nusbaum and Beenhakker ). Bursting neurons are of particular importance inrhythmic patterns 2002
rhythmically active CPG networks, which control the ongoing motor behaviors that underlie coordinated activity such as
swimming, invertebrate heartbeat, feeding, and limbed locomotion (Friesen and Pearce ; Calabrese ; Calabrese1993 1995
et al. ; Marder and Calabrese ; Smarandache et al. ).1995 1996 2009
Extensive research into the mechanisms that generate network bursting activity and its role in  has beenmotor behavior
done in invertebrates (Calabrese ; Nusbaum and Beenhakker ; Selverston ). 1995 2002 2005 Invertebrate CPG networks
are comprised of a relatively small number of neurons and, in many systems, the intrinsic properties of the participating
neurons, and the network connectivity is well known. These networks produce multiple complex outputs that control
similar behaviors as the much larger CPG networks of vertebrate animals (Marder and Calabrese ).1996
Bursting activity can be generated by individual neurons or through synaptic interactions within networks. Endogenous

 in individual neurons emerges as the result of the interaction among participating ionic currents, often in thebursting
presence of tonic excitatory drive (Harris-Warrick and Flamm ; Guckenheimer et al. ). Endogenous bursting1987 1993
neurons are often  of the networks in which they are embedded, which rhythmically drive follower neuronspacemakers
(Selverston ). Bursting may also emerge as a network phenomenon through synaptic interactions of individual2005
neurons that are not necessarily endogenous bursters (Selverston et al. ). In such networks, the rhythmic properties2009
cannot be ascribed to any individual neuron but emerge as a result of . However, as describedsynaptic organization
below, network bursting can also involve endogenous bursters.
While bursting is a stereotypical mode of neuronal activity, there are qualitatively different types of bursting patterns that
differ not only in the bursting attributes (e.g., burst frequency, number of spikes per burst, inter-burst interval, )duty cycle
but also in the mechanisms that govern their generation. These mechanisms can be investigated from two different, but
complementary, perspectives:  and dynamics. The  involve the participatingmembrane biophysics biophysical mechanisms
ionic and synaptic currents and  that interact to generate . The neuromodulators bursting activity dynamical mechanisms
involve nonlinearities, time scales, and bifurcations that govern the initiation and termination of the bursts, the duration of
the inter-burst intervals, and additional properties of the bursting patterns. There is no one-to-one correspondence
between these two mechanisms. In fact, different sets of ionic currents can give rise to qualitatively similar bursting
patterns by the same dynamical mechanism, and, similarly, the same sets of ionic currents can give rise to different
bursting patterns. This article focuses on the dynamical mechanisms of bursting and some of the biophysical mechanisms
underlying the dynamical behavior.

Endogenous Bursting in Individual Neurons

Bursting patterns can be considered as bursts of spiking activity in otherwise quiescent neurons or, alternatively, as
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persistent spiking which is periodically suppressed. These contrasting descriptions can be used to describe the main
mechanistic features of bursting: the burst initiation and termination. Additionally, a complete description of bursting
activity must include an analysis of spiking properties within a burst, in particular, what determines the intra-burst spike
frequency, as well as the dynamical properties of the  ( s).inter-burst intervals IBI

Classification of Bursting Neurons Using Bifurcation Theory

A classification of mechanisms of spike initiation and termination has been described in terms of bifurcations of dynamical
systems (Izhikevich , ). Bifurcations describe the qualitative structural changes in the dynamics of the system.2000b 2007
The dynamical systems analysis of neuron and network dynamics is based on the assumption that the output of the
system is the solution of a set of differential equations, based on the biophysical properties of the neurons and their
synaptic connections. The number of variables in the differential equation is often referred to as the dimension of the
system. From a mathematical viewpoint, these equations result in a stable solution trajectory (not necessarily solvable
explicitly) that describe the time-dependent changes in the dynamical properties of the neurons, including the voltage
trajectories. Using dynamical systems methods, these equations can be analyzed, often in a reduced form, by exploring
the transitions between fast and slow kinetics. The  of a neuron, for example, may correspond to a stable resting state

 of the dynamical systems equations. , in contrast, corresponds to a stable equilibrium point Repetitive spiking periodic
 .orbit (limit cycle)

Dynamical systems often evolve in multiple time scales. For instance, the rest state of a neuron can, in a slow time scale,
gradually drift to a more depolarized voltage and then suddenly transition to a spiking state. In the fast time scale, these
transitions appear as sudden changes in the  of the system: a stable fixed point (rest state) suddenlygeometric properties
changes into an unstable one, and a stable periodic orbit (spiking) appears. These transitions reflect the bifurcations of
the underlying dynamical system. A thorough study of the bifurcations underlying the generation and termination of 

 can be found in Izhikevich ( ).bursting activity 2000b
In the classification of bursting dynamics, the underlying bifurcations of the fast dynamics can be used to describe the
overall burst structure. For instance, a saddle-node ( ) bifurcation and a homoclinic ( ) bifurcation govern burstSN HOM
initiation and termination, respectively, in  bursters (Fig. 1). In contrast, both burst initiation and termination insquare-wave

 bursters (Fig. 2) are governed by saddle-node on an invariant circle ( ) bifurcation (Rinzel and Lee ;parabolic SNIC 1987
Butera et al. ; Rinzel and Ermentrout ).  bursters involve a subcritical Andronov-Hopf bifurcation ( )1996 1998 Elliptic sub-AH
and an SN bifurcation for burst initiation and termination, respectively (Izhikevich ) (Fig. 4). To a large extent, these2000a
bifurcations also govern the dynamics of both the intra-burst spike frequency and the IBIs, for example, the shape and
amplitude of spikes, spike-frequency adaptation, and  (Cymbalyuk et al. ).bistability 2002

Fig. 1 Square-wave bursting in the modified Morris-Lecar model
. ( ) Slow negative feedback via calcium accumulates during the burst and slowly decays during the silent phase. The slowa

accumulation of calcium activates   , which subsequently terminates the burst. Calcium concentration is governed by ′ =  (−   I K(Ca) Ca ε μ g

   ( )(  −    )), Ca  = 10, ε = 0:005,  = 0:2. ( ) Bifurcation diagram showing the region of bistability and bursting. The bifurcationCa m ∞ V V E Ca 0 μ b

parameter  is a function of calcium.  indicate the direction of the change in  during silent and active phases of burstingz Arrows z
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Fig. 2 Parabolic bursting in the modified Morris-Lecar model
. Model is the same as in Fig. 1 with an additional slow variable  to generate the underlying slow oscillation:    =    (  −    ).s I ,Ca s g ,Ca s V E Ca
( ) Projection of the bursting trajectory onto the slow-variable plane. Direction of movement is indicated with . The a arrows straight line
represents the boundary between equilibria and oscillation for the fast subsystem when the slow variables are fixed; it is where the
SNIC bifurcation occurs. Below the low-voltage steady state is the only fast subsystem attractor (silent phase), whereas above this 

 there is an oscillation of the fast subsystem (spiking). ( ) Time course of parabolic burstingcurve b

From a dynamical systems viewpoint, a simple model that is able to generate oscillatory behavior is two-dimensional and
involves the interaction of voltage and a recovery variable. Voltage increases due to a  effect on apositive feedback
relatively fast time scale, typically generated by calcium or sodium. The recovery variable opposes the changes in voltage
on a slower time scale and, in biophysical models, corresponds to a state variable of a voltage-gated ionic current such as
a potassium current. Although the classical  is four-dimensional (Hodgkin and Huxley ), theHodgkin-Huxley model 1952
spiking behavior in this model can be reduced to a two-dimensional model (Kepler et al. ) without losing significant1992
information.
A simple way to produce  in a model is to use a two-dimensional system that produces spiking and addbursting activity
one or two slow variables that modulate the spiking activity. The dynamical variables that make up a bursting neuron can
then be separated into two subgroups: fast (if they evolve on the time scale of a spike) and slow (if they evolve on the
time scale of a burst, roughly determined by the IBI), thus giving these models their name, fast-slow bursters. The
bursting model can then be written in the following form:

where  is a vector of at least 2 fast variables for repetitive spiking.  is a vector of slow variables that modulates X Y fast
. The small parameter  ≪ 1 is a ratio of fast-slow time scales. To determine the type of bursting activity that thespiking μ

dynamical system will exhibit, the slow variable  is treated as a constant parameter in the fast subsystem equation  ′ = Y X F
( ,  ). The parameter  is used to determine the bifurcations in the  of the fast subsystem whichX Y Y geometric properties
correspond to the transitions at the burst onset and termination.
The number of slow variables necessary to produce bursting in a model neuron depends on the underlying generic burst
mechanisms that involve additional specific mechanisms of burst initiation and termination. A bursting neuron can be
driven by one of the two generic mechanisms: a  such as in the square-wave burster (Fig. 1), or a hysteresis loop slow

, such as in the parabolic burster (Fig. 2). Hysteresis loop refers to the existence of bistable dynamics in the fastwave
subsystem: if the slow variables are kept fixed at a constant value (within some range), the fast subsystem will exhibit two
attractors (a stable  and a periodic orbit) simultaneously. Hysteresis-loop bursting requires only one slow equilibrium point

 in three total variables as a minimal model for bursting. The slow variable allows the bistable fastvariable, resulting
subsystem to transition between its two stable states in either of two ways (Rinzel and Ermentrout ). For example,1998
when the trajectory is near the stable fixed point of the fast subsystem, the slow variable grows until this fixed point
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becomes unstable (through a fast subsystem bifurcation) and the trajectory transitions to the stable periodic orbit. The
slow variable then decays until the stable periodic orbit vanishes or becomes unstable (again through a fast subsystem
bifurcation) and the trajectory transitions back to the stable fixed point and the cycle repeats.
In contrast, if the fast subsystem is monostable such as in the parabolic burster (Fig. 2), two slow variables will be
necessary to generate bursting activity, resulting in a total of four variables for a minimal model of bursting. In this case,
the slow subsystem requires two variables and exhibits an autonomous  attractor without feedback from voltagelimit cycle
changes in the fast subsystem. The neuron bursts because the fast subsystem is driven periodically through SNIC
bifurcations.
In what follows, we will think of a fast-slow burster as a slow system driving the fast system through various bifurcations
that govern the initiation and termination of . There are 16 possible pairs of bifurcations in hysteresis-loopbursting activity
bursters and 8 possible pairs of bifurcations in slow-wave bursters (Izhikevich ). Each one of these bifurcations2000b
corresponds to a different topological bursting mode. Although not all these bifurcations have been found in biological
neurons, this description has proved to be insightful. We discuss some of them in detail below (for additional information,
see Izhikevich ( )).2000b
One of the 8 slow-wave bursters can arise from a pair of SNIC bifurcations (both burst onset and termination) and is also
known as the circle-circle or parabolic bursting (Fig. 2). The topological type of the hysteresis-loop burster depends on
whether the fast system is close to either an SN-homoclinic orbit or a Bautin bifurcation (Figs. 3 and 4). For instance, one
of the 16 possible hysteresis-loop bursters involves sub-AH/fold combination of bifurcations to obtain an elliptic burster
(Figs. 4 and 5).

Fig. 3 Pairs of bifurcations in fast-slow hysteresis bursters with the fast subsystem near a saddle-node homoclinic orbit (SN-HOM)
bifurcation

. ( ) Bifurcation diagram showing changes in the geometry of the fast subsystem as parameters are varied. ( ) A system near such ana b
SN-HOM bifurcation may exhibit four different types of fast-slow bursting. Traversing from the  to the  leads to red region green region

 bursting in which burst initiation is through the fold (or SN) bifurcation and the burst termination is through a homoclinicsquare-wave
orbit bifurcation
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Fig. 4 Pairs of bifurcations in fast-slow hysteresis bursters with the fast subsystem near a Bautin bifurcation
. ( ) Bifurcation diagram showing changes in the geometry of the fast subsystem as parameters  and  in the topological normal forma a b

′ = (  +  ) +  | |  −  | |  are varied. When the system is near a Bautin (or Andronov-Hopf) bifurcation it may exhibit four types ofz a iω bz z 2 z z 4

bursting when the bifurcation parameters  and  change. In the upper two quadrants, the bifurcation of the rest state takes place viaa b
the super-AH and in the lower two quadrants via the sub-AH bifurcation. ( ) Four possible topological types of bursting with differentb

bifurcations of the rest and spiking states. Traversing from the  to the  leads to  bursting in which thered region green region elliptic
burst initiation is through the sub-AH bifurcation and the burst termination is through the fold bifurcation

Fig. 5   Elliptic bursting in the Morris-Lecar model (variables V and w) with an additional I K(Ca) . Green curves

are nullclines  ′ = 0 and ′ = 0 of the fast subsystem. As the neuron transitions from silence to bursting and back again, there is a clearV w
sequence of changes in the geometry of the phase plane of the fast subsystem. These changes correspond to bifurcations. In the

elliptic burster, burst initiation is through the sub-AH bifurcation, and burst termination is through the fold (or SN) bifurcation

The pairs of bifurcations that determine the initiation and termination of a burst can also be used to classify bursting
neurons based on their intra-burst spike-frequency content. If the burst onset is through a SNIC bifurcation, the burst
shows a progressive increase in spike frequency. If the burst termination is through a homoclinic orbit bifurcation, there is
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spike-frequency adaptation (a progressive lengthening of inter-spike intervals ( s)) near the end of the burst. This is aISI
prevalent feature in invertebrate bursting neurons. Guckenheimer et al. ( ) studied the scaling properties of ISIs at1997
transitions associated with a homoclinic bifurcation corresponding to the transition from spiking to . Thequiescence
homoclinic orbit bifurcation results in a spike frequency that decreases as a function of the distance to the saddle. The
proximity of homoclinic and a sub-AH bifurcation was used to explain the phenomenon of spike-frequency adaptation.
The slow adaptation variable will cause the trajectories of the fast system to track a family of stable periodic orbits until
the homoclinic bifurcation is reached, after which they become quiescent (Guckenheimer et al. ).1997

Models of Bursting Neurons

Bursting in neurons is a dynamical mechanism generated by the interplay of different types of ionic currents. There is not
a one-to-one mapping between the sets of ionic currents and the stereotypical type of bursting patterns. Bursting
mechanisms have been studied using biophysical (conductance-based) models, which include a detailed description of
the participating currents, or reduced models, capturing stereotypical bursting patterns in a relatively simple way, but
lacking any correspondence to the underlying . Below, we briefly describe these two approaches with a specialbiophysics
emphasis on biophysical models related to invertebrate systems.

Reduced Models

The simplest mechanism to generate  consists of a sinusoidally forced integrate-and-fire (IF) modelbursting activity
(Lapicque ) where the subthreshold dynamics are linear. The sinusoidal input brings voltage above threshold for a1907
portion of its period, thus causing persistent firing during an interval within this period and silence outside it. This
mechanism can be extended to include models with two- and three-dimensional linear subthreshold dynamics (with or
without intrinsic subthreshold oscillations) and the quadratic integrate-and-fire models (Feng ). While the2001
subthreshold dynamics in these models can be in principle connected to the biophysical properties of neurons, the spike
initiation and termination mechanisms are ad hoc.
The integrate-and-fire-or-burst (IFB) (Smith et al. ) model is a generalization of the IF model to include an additional2000
slow variable representing the de-inactivation of a simplified T-type calcium current (I ) with instantaneous activation. TheT
subthreshold dynamics are, therefore, two-dimensional. This additional current endows the model with the ability to
exhibit  . This model is able to generate bursts of activity when voltage is hyperpolarizedpost-inhibitory rebound (PIR)
enough to de-inactivate I . Since the threshold for de-inactivation is more depolarized than the resting voltage, the neuronT
can respond to a brief input with a burst of spikes. However, the intrinsic dynamics of the model does not produce enough

, and so periodic bursting requires an additional sinusoidal input current.hyperpolarization
The FitzHugh-Rinzel  model (Rinzel ) is a three-dimensional generalization of the (two-dimensional)(FHR) 1986
FitzHugh-Nagumo (FHN) model (Fitzhugh ; Nagumo et al. ; Fitzhugh ). The classical FHN forms the fast1961 1962 1969
subsystem, which, to first approximation, produces oscillations when the (unstable) fixed point is located in the middle
branch of the cubic -nullcline. The transition from a stable fixed point to a stable  occurs through anV limit cycle
Andronov-Hopf bifurcation as the tonic (DC) current is increased. In the FHR model, this control parameter is substituted
by a slow variable, which governs the generation of elliptic bursting. Modifications to this model could, in principle,
generate bursting activity by other mechanisms.
The Hindmarsh-Rose (HR) model (Hindmarsh and Rose ; Hindmarsh and Cornelius ) is also three-dimensional1984 2005
and slightly more complex than the FHR model. In contrast to the FHN model, the fast subsystem of the HR model has a
quadratic recovery-like nullcline that creates extra . This produces  through proximity to aequilibrium points bistability
saddle-node homoclinic orbit bifurcation. A slow adaptation variable provides the necessary negative feedback to
generate square-wave bursting.

Minimal (Phenomenological) Biophysical Models

The two-dimensional version of the Morris-Lecar (ML) model (Rinzel and Ermentrout ) describes the generation of1998
oscillatory activity as the result of the interaction of a non-inactivating calcium current with instantaneous activation and a
delayed-rectifier potassium current. The mechanisms responsible for the generation of oscillations include the
Andronov-Hopf and SNIC bifurcations and depend on the parameters describing the activation/inactivation curves and
voltage-dependent time scales. The parameters of the basic ML model can be adjusted to simulate the envelope of
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bursting waveforms, which has been carried out in modeling the AB-PD neurons of the pyloric pacemaker in the 
   (Skinner et al. ; Kopell et al. ). The substitution of a biophysicalcrustacean stomatogastric ganglion (STG) 1994 1998

parameter (   ) by a slow variable endows the ML model with the ability to generate . One example isI app bursting activity

the bursting patterns generated by adding a calcium-activated K  current,  :+ I ( )K Ca

The modified ML model for bursting becomes

As the calcium concentration varies, the system may become bistable so that the fast subsystem can periodically switch
back and forth between repetitive spiking and resting, thus producing bursting. The modified ML model is able to produce
either  or  bursting patterns by changing parameter values that alters the type of bistability in the fastsquare-wave elliptic
subsystem. Burst initiation by a sub-AH bifurcation produces an elliptic burster, whereas burst initiation by a saddle-node
bifurcation produces a square-wave burster. To obtain the slow-wave oscillation underlying  bursting in the MLparabolic
model, the addition of one more variable is required to provide a slow  that counteracts the slowpositive feedback
negative feedback of  .I ( )K Ca

Biophysical Properties of Bursting Neurons

Bursting in neurons arises from a complex interaction between many ionic currents, where the actual ionic mechanisms
may vary between different bursting neuron types. In most cases, bursting oscillations involve the presence of a slow
inward ionic current. The current-voltage (IV) relationship of this inward current includes a negative slope region and
results in an inverted bell-shaped structure which allows the inward current to become active regeneratively. Such
currents include the persistent Na  current (   ) and low-threshold inactivating calcium currents (   ). Such currents+ I Nap I Ca
can work together with other currents such as the slow calcium-activated nonselective cation current (   ) and theI CAN
hyperpolarization-activated inward current (   ) to depolarize the membrane potential and produce a burst of actionI h
potentials. The activation of these inward currents, which leads to a burst of spikes, is counteracted by the slow activation
of voltage- and calcium-dependent outward currents which terminate the burst. Moreover, some inward currents, such as
the T-type calcium current, inactivate upon depolarization of the membrane potential, and this inactivation may also
contribute to the termination of the burst.
Often neurons that do not burst in isolation can produce bursting activity in a network (as described in the next section).
The pyloric network LP neuron does not burst endogenously but, in response to inhibitory input, can produce 

 and plateau potentials that support a burst of action potentials. These properties were describedpost-inhibitory rebound
in detailed biophysical models of this neuron, first in a single-compartment model (Buchholtz et al. ; Golowasch et al.1992

) and, more recently, in a multi-compartment model that was used to explore how different ionic conductance levels1992
can produce similar bursting output in this neuron (Taylor et al. ). In the biological network, the LP neuron receives2009
periodic inhibition from the  AB and PD which result in the production of  out of phasepacemaker neurons bursting activity
with the pacemaker bursts.  generation is supported by a similar set of ionic currents as those thatPlateau potential
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underlie bursting activity. For example, the low-threshold slowly inactivating   is substantially inactive at rest, butI Ca
inactivation can be removed upon inhibitory input, thus promoting the plateau potential, often together with a burst of
spikes. Zhang et al. ( ) showed that, in the dorsal gastric (DG) motor neuron of the ,   , which is activated by1995 STG I CAN

calcium but is carried by Na  and K , can underlie the plateau potential that results in a long  and+ + after-depolarization
contributes to burst firing. The current usually acts alongside a low-threshold   , and the dynamical interaction canI Ca
cause a strong regenerative current that supports plateau potentials.
The pacemaker AB neuron of the  pyloric network is an  whose bursting activity dependscrustacean endogenous burster
on the presence of extrinsic neuromodulatory inputs (Hooper and Marder ). Early attempts to dissect the ionic1987
mechanism underlying endogenous bursting involved a plateau potential which is initiated and maintained by   and  I Nap I

 and terminated by   (Gola and Selverston ). Burst frequency in AB is strongly dependent on calcium entryCa I K(Ca) 1981

because burst frequency decreases with calcium entry and higher calcium entry results in a larger potassium-mediated
post-burst . The AB neuron employs different mechanisms for bursting under a variety of modulatoryhyperpolarization
conditions (Harris-Warrick and Flamm ). A modeling analysis of the AB neuron bursting activity examined the1987
mechanisms that generate and control bursting in this neuron and its electrically coupled partner, the PD neuron
(Soto-Trevino et al. ). This model demonstrated that the bursting in the AB neuron was crucially dependent on the2005
modulator-activated inward current   , and, as discussed in the next section, the PD neuron greatly influences the I MI duty

 and dynamical range of bursting frequency in the pacemaker group.cycle
Bursting can also occur solely due to the slow inactivation of   without the need for . Two examples of ionicI Ca bistability

mechanisms underlying burst firing are the R15 neuron, located in the abdominal ganglion of the mollusk Aplysia
, and the  cardiac ganglion interneurons. The essential ingredients for bursting in the R15 neuron are thecalifornica lobster

negative slope region of   that determines the burst onset, together with the calcium-dependent inactivation of thisI Ca
current, which terminates the burst (Adams and Levitan ; Kramer and Zucker ). A biophysical model of the R151985 1985
neuron showed that   and   are not necessary for producing the parabolic-like bursting in this neuron (CanavierI K(Ca) I CAN

et al. ). This modeling study also demonstrated the presence of slow oscillations in the absence of action potentials,1991
supporting the parabolic structure (Fig. 2) of the bursting. The parabolic nature of the R15 bursting was further supported
by the nonuniform intra-burst spike frequency, even in the absence of   . Similar to the R15 neuron, the lobsterI K(Ca)
cardiac ganglion interneurons respond to a steady depolarizing input with slow-wave oscillations called driver potentials.
These driver potentials are mediated by slow activation and calcium-dependent inactivation of an   (Tazaki and Cooke I Ca

).1990

Bursting in Networks of Neurons

Principles Underlying Rhythmic Bursting in Networks

CPG oscillations can arise either from pacemaker neuron activity or as a network property. In pacemaker-driven
networks, one or more neurons can be identified that produce bursting oscillations even when synaptically isolated from
the network. The rhythm generated by these  is then propagated to the network through synapticpacemaker neurons
interactions. In pacemaker-driven networks, the properties of the pacemaker neurons are the primary determinant of the
rhythm frequency. In contrast to pacemaker-driven CPG networks, in other CPG networks, the rhythmic pattern
generation is controlled by subnetworks of neurons and thus emerges as a network property. Although network-driven
CPGs may also include endogenously bursting neurons, the network frequency in these CPGs is primarily determined by
parameters that control the activity of the rhythm-generating subnetwork.

Half-Center Oscillators

Early studies of locomotion in cats by Graham Brown led him to suggest that the alternating activity of flexor and extensor
muscles is controlled by a network of two neuron populations in the spinal cord, each of which inhibits the other to
produce antiphase alternating activity. He termed these putative central networks that produce antiphase motor activity 

 oscillators ( s) (Graham Brown ). Later studies have found  to be a prevalenthalf-center HCO 1911 reciprocal inhibition
feature of CPG networks in both vertebrates and invertebrates (Marder and Calabrese ). In invertebrate CPGs,1996
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HCOs are often comprised of two neurons coupled through reciprocal inhibition. The two-cell HCOs provide the simplest
network mechanism that is capable of generating stable bursts of alternating activity. Alternating bursting oscillations can
arise in HCOs as an emergent network property even when the individual component neurons are not oscillatory (Wang
and Rinzel ). When the  is composed of endogenous bursting neurons, mutual inhibition acts to stabilize the1992 HCO
burst period, and bursting occurs over a much wider range of biophysical parameters (Cymbalyuk et al. ). Examples2002
of CPG networks whose rhythm-generating mechanism involves HCOs include the CPGs that control  swimmingleech
and heartbeat (segmental oscillators), the   network, and the swim networks in lamprey and thecrustacean gastric mill
gastropod mollusk .Tritonia
Antiphase patterns in HCOs can be generated by various mechanisms that have been classified according to whether
intrinsic or  are involved and whether the inhibited cell transitions to the bursting regime before or aftersynaptic properties
the termination of inhibition by the other cell. The terms  and  (Wang andintrinsic release/escape synaptic release/escape
Rinzel ; Skinner et al. ) have been used to describe these mechanisms.  refers to the inhibited1992 1994 Intrinsic release
cell initiating a burst only when the free cell reaches the end of its burst and turns off inhibition.  refers toIntrinsic escape
the inhibited neuron generating a burst while it is still inhibited and subsequently shutting off the free neuron. 

  has been shown to initiate the inhibited cell burst when the neuron is non-oscillatory (WangPost-inhibitory rebound (PIR)
and Rinzel ), although it has also been shown that a PIR-like current is not required to generate oscillations in HCOs1992
composed of non-oscillatory neurons (Skinner et al. ).  refers to the free neuron membrane potential1994 Synaptic release
falling below the synaptic threshold, thereby allowing the inhibited neuron to transition to a burst. In contrast, synaptic

 refers to the inhibited cell membrane potential depolarizing and crossing a (low) synaptic threshold, therebyescape
inhibiting the free cell. The description of these mechanisms assumes rather  (i) synapses withrestrictive conditions:
well-defined synaptic thresholds and no dynamics and (ii) HCOs that are active in the relaxation regime (very fast
transitions for burst onset and termination). When these conditions are relaxed, antiphase patterns may emerge as a
result of combinations of escape and release such as in the HCO of the leech heartbeat timing network (Nadim et al. 

).1995a

The Role of Electrical Coupling

Computational studies of  have provided much insight into the role of gap junctions in networkselectrical coupling
especially because an inability to cleanly block gap junctions has led to a paucity of experimental data. Electrical coupling
is known to promote synchrony in a network. However, more complex and nonintuitive behaviors can arise from
electrically coupled networks (Sherman and Rinzel ; Chow and Kopell ). Electrical coupling between an1992 2000
oscillatory and a bistable neuron can result in a wide variety of behaviors that depend on both the intrinsic biophysical
properties and the coupling strengths (Sherman and Rinzel ; Kopell et al. ).  between two1992 1998 Weak coupling
identical neurons can induce antiphase oscillation, which extends far beyond the parameter range for oscillation in single
neurons, thus making for a more robust oscillator (Sherman and Rinzel ). Electrical coupling can also produce1992
oscillatory activity when neurons that are silent in isolation are coupled through gap junctions (Sherman and Rinzel ;1992
Manor et al. ).1997
The properties of a non-oscillatory neuron can regulate features such as frequency and amplitude of a bursting neuron to
which it is electrically coupled. However, the influence of a non-oscillatory through gap junctions on oscillations of a
bursting neuron can be nonintuitive (Kepler et al. ). Kepler et al examined the effect of the PD neuron on the 1990 bursting

 of the AB neuron and showed that the electrical coupling between these neurons can serve to either increase oractivity
decrease the oscillation frequency depending on the voltage waveform of the bursting AB neuron. This effect was further
explored through a mathematical analysis of the effect of a bistable neuron coupled to an oscillatory neuron which
showed how the network frequency is influenced by the relative voltages of the bistable neuron compared to the voltage
range of oscillations in the oscillatory neuron. This influence is dependent on the strength of coupling in a nonlinear
manner (Kopell et al. ). Using ML neurons in the relaxation-oscillation regime, the authors showed how the electrical1998
coupling can "pin" the voltage trajectory to the low or high branches of the voltage nullcline than compared to the
uncoupled oscillator, thus changing the frequency and shape of the oscillations. Unexpectedly, a coupling with higher
strength may not necessarily be more effective at influencing the frequency.
The effect of electrical coupling has also been investigated in biophysically realistic model neurons. In the  pyloricSTG
network, for example, electrical coupling between the AB and PD  causes these neurons to fire inpacemaker neurons
synchrony. Of the two, AB is the only neuron that is capable of endogenous bursting. These two neurons, by virtue of
their electrical coupling, fire burst in phase over a wide range of frequencies (Soto-Trevino et al. ). The frequency of2005
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the isolated AB neuron can be greater than 2 Hz but limited to 1 Hz in the intact network, i.e., when coupled to the PD
neuron (Hooper and Marder ). Previous modeling work using reduced models had suggested that the role of the PD1987
neuron in this coupled pair is to regulate the network frequency (Hooper and Marder ; Kepler et al. ; Abbott et1987 1990
al. ). The Soto-Trevino et al. multi-compartment model of the AB-PD pacemaker ensemble demonstrated that1991
increasing the coupling strength caused the slow-wave oscillation and spikes to become near synchronized (Soto-Trevino
et al. ). For large coupling strengths, the non-oscillatory PD neuron transitioned from tonic spiking to large-amplitude2005
bursting. Coupling of the PD to the AB neuron also increased the frequency of AB oscillation compared to the isolated AB
frequency. Thus, the network possesses a way to regulate bursting oscillations that is anatomically separate from the
mechanism of the generation of the bursting.

Segmented Networks of Bursting Neurons

In segmented animals, locomotion and other motor functions often require that the movement of different body parts
maintain a constant phase relative to adjacent parts, despite changes in frequency. In crayfish and , swimming isleech
controlled by the coordinated bursting activity of distributed CPGs in which the undulatory movements appear as a
traveling wave. This traveling wave is generated by segmental oscillators with intersegmental phase lags. The neural
basis that accounts for the stable intersegmental phase differences has been modeled as linear chains of weakly coupled
oscillators (Friesen and Pearce ; Skinner et al. ; Jones et al. ).1993 1997 2003
The crayfish  system is a good example of . The  that drives theswimmeret intersegmental coordination bursting activity
alternating power and return strokes of individual swimmerets on each segment is driven by a local  module. BurstsCPG
of impulses in coordinating interneurons control the relative  of intersegmental bursts and result in a very stabletimings
anterior-to-posterior phase progression of bursts that differ in phase by about 90° between adjacent segments
(Smarandache et al. ; Mulloney and Smarandache ).2009 2010
Swimming in the leech is also involves intersegmental coordination and is characterized by a wave that travels
rostro-caudally along the animal. The crests and troughs are produced by antiphase contractions in dorsal and ventral
longitudinal muscles in body wall segments. Intersegmental  in  is stable at ~20° (Friesen andphase lag body movement
Pearce ). Phase differences are also observed between segmental oscillators in the timing network of the leech1993
heartbeat CPG.
The leech heartbeat pattern is bilaterally asymmetric: on one side, a  wave of  causesrostro-caudal muscle contractions
the peristaltic flow of blood through the heart tube, whereas, on the contralateral side, all segments contract in synchrony.
This asymmetric activity switches after 20-50 cycles. Rhythmic activity of the leech heartbeat CPG arises independently in
pairs of HCOs located in the third and fourth ganglia (Nadim et al. ; Hill et al. ). Rhythmic bursting arises from1995b 2002
mutual inhibitory connections between two such neurons. These rhythm-generating subnetworks are coupled via
coordinating interneurons from other segmental ganglia to produce a stable  in the range 15-20 % (Hill etphase difference
al. ).2002
The theory of weakly coupled oscillators (Schwemmer and Lewis ) has been used to understand intersegmental2012
coordination. This theory is used to predict phase differences between segmental oscillators under a mathematically
described assumption of . A chain of such oscillators with nearest-neighbor coupling can support aweak coupling
constant-speed traveling wave. The weak coupling implies that the intrinsic dynamics are dominant, so that the perturbed
system remains close to the  and the coupling only affects the speed with which the neuron moves around itslimit cycle
limit cycle. This limit cycle represents the oscillatory spiking activity in the case of a tonic spiking neuron or the slow-wave
oscillations in the case of a bursting neuron (as in Jones et al. ). The dynamics of each neuron can be reduced to a2003
single-phase equation that describes the phase of the neuron in the limit cycle. This allows for the construction of phase
models to investigate the pattern of timings of individual elements in a network and the collective properties of the system.
The key to reducing a high-dimensional model and exploiting the form of the phase equations is the computation of the
phase interaction function  (Ermentrout and Kopell ; Schwemmer and Lewis ), which reduces the interactionH 1991 2012
between the oscillators to a function of their phase difference Δ . Methods of singular perturbation theory can often beφ
used as an approach for deriving the interaction function  (Hoppensteadt and Izhikevich ). The essential step inH 1997
deriving  is the infinitesimal  (iPRC) and its relation to the solution to the adjoint equation. TheH phase response curve
iPRC quantifies the normalized shift due to an infinitesimally small perturbation delivered at any given phase on the limit
cycle so that the oscillator responds in a linear fashion.
In the crayfish  system, the coupling functions  have been approximated experimentally to understand howswimmeret H
multiple oscillator elements coordinate their activity to produce wavelike activity representative of swimmeret locomotion



11

SpringerReference
David Fox, Horacio G. Rotstein and PhD Farzan Nadim
Bursting in Neurons and Small Networks

22 Apr 2014 04:12http://www.springerreference.com/index/chapterdbid/348519

© Springer-Verlag Berlin Heidelberg 2014

(Skinner et al. ; Jones et al. ). In this case, the iPRC was used to approximate the  function and the zeroes of1997 2003 H
the G function coupling two modules for a model containing two ascending and one descending connection predicted a
stable phase difference of 90°. A good agreement with the experimental data showed that the effects of both excitatory
and inhibitory ascending connections combine to promote a Stable 90°  between  neuron bursts inphase lag power stroke
neighboring ganglia.
Different strategies are used to achieve the appropriate phase differences between neighboring segments. Phase
differences generated by asymmetries in the coupling between segmental oscillators, where ascending and descending
interneurons vary in strength and sign (Skinner and Mulloney ; Smarandache et al. ). On the other hand, the1998 2009
excitability gradient hypothesis states that phase differences arise from the intrinsic frequency or excitability differences
between segmental oscillators (Grillner et al. ). In the crayfish swimmeret , stable phase differences arise due to1993 CPG
the combined effect of excitation and inhibition from ascending and descending coordinating neurons (Jones et al. ).2003
In contrast, in the  heartbeat timing network, a stable  seems to arise from coupling betweenleech phase difference
segmental oscillators of different inherent frequencies. When two segmental oscillators with different intrinsic frequencies
were coupled in a model network, the faster one dominated the network frequency and led in phase. The phase
difference was directly correlated with the difference in periods (Hill et al. ). This phase difference arises because the2002
faster segmental oscillator bursts before the slower one and thereby terminates the activity of the shared coordinating 

. There is a brief time in each cycle when the slower segmental oscillator is relieved of inhibition frominterneuron
coordinating interneurons before the faster segmental oscillator ends its burst. Thus, the slow segmental oscillator can be
entrained by the fast segmental oscillator through the indirect action of the coordinating interneuron.

Summary

Bursting is a ubiquitous property of neurons in many systems. Bursting in single neurons often results from the interaction
of voltage-gated ion channels at various time scales. Bursting can be modeled at different levels of complexity, from
abstract reduced models to minimal two- and three-dimensional models and biophysical realistic conductance-based
models, often with good agreement with the experimental activity. A bursting neuron is often described by a system of 

 operating at two different time scales, also called fast-slow bursters. The different types ofordinary differential equations
bursting in such systems have been classified according to dynamical systems theory in terms of the transitions between
the silent and spiking states. The hysteresis-loop bursting is the simplest form of bursting that requires only one slow
variable in addition to the fast subsystem that can operate in two stable states: quiescent or tonic spiking. On the other
hand, without such fast bistable dynamics, the slow-wave oscillation must be generated independent of the fast spiking
and requires at least two slow variables. The classification of different bursting mechanisms is usually done by describing
the transitions between the silent and active phases of bursting using bifurcation theory analysis of dynamical systems.
Many oscillatory networks include bursting neurons that are not endogenous bursters. These neurons respond to synaptic
input with bursts of spikes that are generated by the activation of regenerative or hyperpolarization-activated inward
currents. Even in a two-cell network, the coupling of a bursting neuron to a non-oscillatory neuron can result in
phase-locked bursting. In this case, the properties of the non-oscillatory neuron can influence the network frequency and
the , often in unexpected ways.  of a non-oscillatory neuron to a bursting neuron,oscillation amplitude Electrical coupling
for example, can lead to faster or slower bursting oscillations. On the other hand, reciprocally inhibitory coupling can lead
to either alternating or synchronized oscillations. In larger networks of bursting neurons, such as those involved in the
control of locomotion, the oscillatory activity can be analyzed as a chain of coupled oscillators. These oscillators often
represent the  of the locomotor networks as recorded from the segments of the spinal cord. The theory ofbursting activity
weakly coupled oscillators provides a powerful tool for the understanding of how phase-locked oscillations arise in chains
of segmental oscillators and can be used to predict which cellular or synaptic parameters control the frequency of the
network and the relative phase of the segmental oscillators.
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