Network[©] Version 1.40

User Manual

December 26, 2001

Please send all comments and bug reports to Farzan Nadim (farzan@njit.edu).

0. Introduction

Network is a neuronal network simulation software implemented in C. Network can be used to model single neurons with Hodgkin-Huxley type dynamics, or networks of such neurons connected with synapses. Network supports both a 4th order Runge-Kutta and a variable-time-step integration method.

The current version of Network runs in UNIX and the parser is written in bash shell script and gawk. Network is run from the command line and outputs to standard output. There is no graphical interface. At the command line, network reads the name of the project (e.g. *project*) and looks in the current directory for a configuration file (*project.cfg*) and a file containing the equations and parameters (*project.par*).

In this text, the command line commands (\$ denotes the command prompt) \$ command and the contents of files are displayed using the Courier font.

1. Running network

The network command line is of the form

bash\$ network [OPTIONS] project

The first argument on the command line is the (user-assigned) name of the project. Assignments of the cell, synapse or network configurations are done in the file project.cfg. Assignments of the equations and parameters are done in the file project.par. The program searches for these 2 files in the current directory and gives an error message if these files are not found. An optional file project.ics can be provided in the current directory for assignment of initial conditions. If this file exists, network automatically reads it. At the end of each simulation run, network produces a file named last that contains the last point of integration. This file can be renamed to project.ics to be used as the initial condition in the next run.

If no option is passed to network, by default it will produce the *.c and *.h files and a makefile in the current directory, compiles them and runs the executable. The output is directed to the standard output. The output is currently formatted as a matrix where each row represents one time step. The first element of the row is time and is followed by all the state variables in the order of definition.

Additional options must appear *before* the project name. The order of the options is irrelevant. The options are passed to network in the standard UNIX format with a hyphen. Whenever the option requires an argument (such as -b begin_time), the space between the 2 parts is *required*. The current options are:

- -b begin_time
- -c generate the *.c and *.h files, compile and produce an executable (called runnetwork) in the current directory and exit without running the executable.
- -e end_time
- -h delta_time
- -k filename keep only variables written in filename.
- -keep same as -k.
- -notabulate run without tables (default).
- -nt same as -notabulate.
- -par filename use this option to pass additional parameters to network. This option is useful when changing parameters of the model without compiling. Since this file filename is always read after project.par, it is a good way to modify parameters without touching the original project.par file.
- -r run the executable (runnetwork) in the current directory without compiling the functions. Note that using the options -c and -r together is superfluous since the latter option overrides the former. To compile and run use neither of the two options.
- -rm remove the *.c and *.h files from the current directory after producing the executable file.
- -s skip only the first point of this many steps is printed to standard output. Use this option when you have a small delta_time to keep the output small.
- run with tables. This option makes look-up tables for all the steady-state activation and inactivation and time constant functions. The tables are from -150 to 150 mV in increments of 1 mV. Values in between are obtained by linear interpolation. Values outside the range are set to the boundary values.
- -tabulate same as -t.
- -v version.
- -version same as -v.

All options may be included in the file \$HOME/.network_options and/or project.opt (in the project directory). These files are read in order and latter assignments override the former ones. Command line assignments are read last and override those in the option files. The options that may be included in the option files are the following in Table 1. These options should be included in the file as option=value

with no space in between. The # sign at the beginning of the line comments out that option.

The Configuration File

The contents of the file project.cfg are necessary for determining the structure of the model. The configuration file is a list of statements, one per line, that describe the structures of the cells or compartments, their connections and the names and types of intrinsic and synaptic currents, without specifying any parameters. Empty lines and anything following a # symbol on each line is ignored. Additional spaces and tabs are also ignored. The program is case sensitive.

Table 1. Options in the option files				
Option	Command Line Equivalent	Default Value	Other Values	Descritpion
REMOVEFILES	-rm	0	1	remove non-executables
ERRORFILE	-	/dev/null	filename	less serious errors
errorfile	-	/dev/stderr	filename	more serious errors
outputfile	-	/dev/stdout	filename	output
parse	-parse	1	0	parse or not
run	-r	1	0	run or not
compile	-с	1	0	compile or not
tabulate	-t	0	1	tabulate inf and taus (speeds up integration)
tO	-b	0	any number	begin time
tmax	-е	100	any number > t0	end time
dt	-h	0.1	any number	integration dt
skip	-8	10	any positive integer	print one point every "skip"
dd	-	0	1	pipe output through "dd bs=10000" to speed up write to disk
par2	-par	""	filename	additional parameter file
tolerance	-	-1	any number > 0	tolerance > 0 forces the program to use a variable time step integrator for stiff equations. Otherwise RK4 is used.
varfileoption	-keep	"	filename	filename contains variables to be kept.

The statement

compartment name

declares a compartment called name. The terms compartment and cell are equivalent. Such a line also indicates that the lines immediately following will define the contents of this compartment. The statements immediately following are usually definitions of intrinsic ionic currents (see Table 2 for a list):

Passive L

mhTauInf Na mTauInf Kd

These 3 lines define 3 ionic currents (in the last defined compartment). The first entry on each line defines the type of current and the second entry is the user-assigned name.

Table 2. Available types of intrinsic ionic current		
Type of intrinsic current	Properties	
Passive	leak current	
mTauInf	single-gated (activation) current	
mInst	single-gated (activation) instantaneous current	
mhTauInf	double-gated (activation/inactivation) current	
mInst_hTauInf	double-gated (activation/inactivation) current with instantaneous activation	

The statement

synapse compl comp2

declares a synaptic connection from the compartment (cell) compl to the compartment (cell) compl. This statement is only meaningful when it is immediately followed by a new line containing the definition of the synapse. For example:

GradedmTauInf S

defines a graded synapse named S. See Table 3 for available types of synapses.

The statement

connect compl comp2

connects the compartment comp1 to the compartment comp2 symmetrically.

Table 3. Available types of synaptic current		
Type of synaptic current	Properties	
GradedmTauInf	graded (single-gated) synapse	
GradedmInst	graded (single-gated) instantaneous synapse	
GapJunction	gap-junctional (electrical) synapse (NOT SYMMETRIC)	
GradedmTauInf_mpostTauInf	graded (single-gated) synapse with single-gated (activation) dependence on the postsynaptic potential	
GradedmInst_mpostInst	graded (single-gated) instantaneous synapse with single-gated (activation) instantaneous dependence on the postsynaptic potential	
AlphaFunction	spike-mediated alpha function $\alpha t e^{1-\alpha t}$	
PulseStim I	does not define a true synapse, but allows a set of square pulse currents of a fixed amplitude, duration and frequency to be injected into the postsynaptic cell	

ControlledPulse	does not define a true synapse, but allows a set of square pulse currents of a fixed amplitude, duration and frequency to be injected into the postsynaptic cell, depending on whether the presynaptic cell is above or below some fixed threshold
-----------------	---

Т

The Parameter File

This section describes the contents of the file project.par. These contents depend on the cells and currents defined in the configuration file. The values in the tables are just given as examples. Empty lines and anything following a # symbol on each line is ignored. Additional spaces and tabs are also ignored. The program is case sensitive. The units are arbitrary and the user should be careful to balance the units.

Parameter definitions for intrinsic currents are given in the following Table 4. (x , X , v and V are equivalent.)

Table 4. Intrinsic parameters that should be defined		
If this is in project.cfg file	These should be in project.par file	
cell Name	Name_Iext=0.0 # pA	
or	Name_Cm=100.0	
compartment Name	Name_Ga=100.0 # nS (If more than 1 compartment)	
Daggive L	Name_L_Gmax=10.0 # nS	
FASSIVE L	Name_L_Erev=-60.0 # mV	
	Name_Na1_Gmax=100.0 # nS	
mIngt Nol	Name_Na1_Erev=50.0 # mV	
	Name_Na1_mpower=3 # must be an integer	
	Name_Na1_minf=1/(1+exp(-(x +45)/2))	
	Name_Na2_Gmax=120.0 # nS	
	Name_Na2_Erev=50.0 # mV	
mTauInf Na2	Name_Na2_mpower=3 # must be an integer	
	Name_Na2_minf=1/(1+exp(-($x+55$)/3))	
	Name_Na2_mtau=1+10/(1+exp(-(x+55)/3))	
	Name_K1_Gmax=120.0 # nS	
	Name_K1_Erev=-80.0 # mV	
	Name_K1_mpower=4 # must be an integer	
mInst_hTauInf K1	Name_K1_minf=1/(1+exp(-(x+51)/12))	
	Name_K1_hpower=1 # must be an integer	
	Name_K1_hinf=1/(1+exp((x+50)/3))	
	Name_K1_htau=10+100/(1+exp((x+52)/3))	
mhTauInf Ca	Name_Ca_Gmax=11.0 # nS	
	Name_Ca_Erev=-80.0 # mV	
	Name_Ca_mpower=2 # must be an integer	
	$Name_Ca_minf=1/(1+exp(-(x+47)/2))$	
	$Name_Ca_mtau=10+12/(1+exp((x+52)/3))$	

	Name_Ca_hpower=1 # must be an integer
	Name_Ca_hinf=1/(1+exp((x+50)/3))
	Name_Ca_htau=100+200/(1+exp((x+52)/3))
mAlphaBeta K	Name_K_Gmax=120.0 # nS
	Name_K_Erev=-80.0 # mV
	Name_K_mpower=4 # must be an integer
	Name_K_malpha=-0.01*(v+55)/(exp(-(v+55)/10)-1)
	Name_K_mbeta=0.125*exp(-(v+65)/80)
mhAlphaBeta Na	Name_Na_Gmax=36.0 # nS
	Name_Na_Erev=50.0 # mV
	Name_Na_mpower=4 # must be an integer
	Name_Na_malpha=-0.01*(v+55)/(exp((v+55)/10)-1)
	Name_Na_mbeta=0.125*exp(-(v+65)/80)
	Name_Na_hpower=1 # must be an integer
	Name_Na_halpha=0.07*exp(-(v+67)/100)
	Name_Na_hbeta= $1/(exp(-(v+37)/10)+1)$

Parameter definitions for synaptic currents are given in the Table 5. (x , X, v and V are equivalent.)

Table 5. Synaptic parameters that should be defined		
If this is in project.cfg file	These should be in project.par file	
synapse Pre Post	# Nothing is necessary yet.	
	Pre_Post_S1_Gmax=10.0 # nS	
GradedmInst S1	Pre_Post_S1_Erev=-80.0 # mV	
	$Pre_Post_S1_minf=1/(1+exp(-(x+55)/3))$	
	<pre>Pre_Post_S2_Gmax=10.0 # nS</pre>	
CradedmTauInf S2	Pre_Post_S2_Erev=-80.0 # mV	
Gradediiradiii 52	$Pre_Post_S2_minf=1/(1+exp(-(x+55)/3))$	
	$Pre_Post_S2_mtau=10+20/(1+exp(-(x+55)/3))$	
GapJunction Elec	<pre>Pre_Post_Elec_Gmax=10.0 # nS</pre>	
	<pre>Pre_Post_S3_Gmax=10.0 # nS</pre>	
CradedmIngt mpostIngt S2	Pre_Post_S3_Erev=-80.0 # mV	
	$Pre_Post_S3_minf=1/(1+exp(-(x+55)/3))$	
	$Pre_Post_S3_mPosttinf=1/(1+exp(-(x+25)/12))$	
	<pre>Pre_Post_S4_Gmax=10.0 # nS</pre>	
	Pre_Post_S4_Erev=-80.0 # mV	
GradedmTauInf mpostTauInf S4	$Pre_Post_S4_minf=1/(1+exp(-(x+55)/3))$	
	$Pre_Post_S4_mtau=10+20/(1+exp(-(x+55)/3))$	
	$Pre_Post_S4_mPosttinf=1/(1+exp(-(x+25)/12))$	
	$Pre_Post_S4_mPostttau=200/(1+exp((x+12)/2))$	
AlphaFunction A	<pre>Pre_Post_A_Gmax=10.0 # nS</pre>	
	<pre>Pre_Post_A_Erev=-80.0 # mV</pre>	
	Pre_Post_A_AlphaTau=25	
	<pre>Pre_Post_A_Threshold=-20 # mV: presyn</pre>	
	# threshold	
	Pre_Post_A_Slope=1 # 1 or -1: going through	
	# threshold up or down	

	<pre>Pre_Post_A_Tolerance=1e-3 # defined by # default to be 1e-3. This decides the time # tolerance to within which 2 events # coincide.</pre>
	NULL_Post_A_Period=1000 # ms defined only # if the presynaptic cell is NULL.
DulcoStim I	# Decermines the period of the synapse.
# defined only with	NULL_Post_A_Duration=2 # ms
# presyn cell NULL	NULL_Post_A_Amplitude=1000 # pA
	Pre_Post_I_Period=100.0 # ms
	<pre>Pre_Post_I_Duration=-80.0 # mV</pre>
	Pre_Post_I_Amplitude=1000
Controlled Dulse T	Pre_Post_I_Threshold=-20 # mV
controlledraise i	<pre>Pre_Post_I_Delay=10.0 # ms: delay after</pre>
	<pre># threshold crossing & before injection</pre>
	<pre>Pre_Post_I_Above=1 # 1 or 0: inject above</pre>
	# threshold or below

The Initial Condition File

The initial conditions are read from the file project.ics if this file exists in the project directory. The project.ics file should contain each variable on a separate line and each line should be of the form

```
variable=<value>
```

or

```
variable <value>
```

Each time network is run, it creates a file called last that contains the last point of integration. This file could be renamed to project.ics and used as initial conditions for the next run.

The UNIX Interface

Network is run from the UNIX command line by typing

\$ network project > outputfile

All files associated with network are included in \$NETWORKHOME. This directory should be included in the user path or, alternatively, there should be links to the executable files in /usr/local/bin or /usr/bin.

Networks involves 3 executable commands: network is the main script, parse_network is the parser and tabulate_network builds the lookup tables for the –t option.

2. Advanced Features

The variables file option

If keeping all the variables

Keeping the current and conductance

To keep the values of current (cell_ion_I) and conductance (cell_ion_G), the word keep should appear immediately after the name of the ion in the configuration file. For example if project.cfg contains

cell Pyramidal mhTauInf Na keep

the output of network project will contain two columns for Pyramidal_Na_G and Pyramidal_Na_I.

The calcium-dependent current

3. Tutorials

Tutorial #1: A passive cell

```
Make a file called passive.cfg containing the following:
cell P
  Passive L
Make a file called passive.par containing the following:
P_Iext=0
                   # pA
P Cm=200
                   # pF
P_L_Gmax=10
                   # nS
P_L_Erev=-60
                   # mV
Make a file called passive.ics containing the following:
P_Vm=-60
At the command line type:
    $ network passive > out
The program will inform you that it is parsing, compiling and running. The file out
should contain 1000 lines. On each line there should be 2 entries, the first is time and the
second is -60.
Now create a new file called par2 (this name is arbitrary) that contains
P_Iext=1000
                   # pA
At the command line type:
    $ cp last passive.ics
   $ network -r -b 100 -e 300 -par par2 passive >> out
   $ cp last passive.ics
```

```
$ network -r -b 300 -e 500 passive >> out
```

You just injected a 1 nA pulse of duration 200 ms into the cell. The result is in the file out and can be plotted with gnuplot.

Tutorial #2: The Morris-Lecar cell

Tutorial #3: The Hodgkin-Huxley cell

Tutorial #4: A Passive Cable

Tutorial #5: An Active Cable

Tutorial #6: Reciprocal Inhibition